Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MEF Üniversitesi Aka...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Serverless vs. on-premises: A performance analysis of ml deployment with aws fargate, GCP Cloud run, and On-Prem

Authors: Kırçiçek, Oğuz; Çakar, Tuna;

Serverless vs. on-premises: A performance analysis of ml deployment with aws fargate, GCP Cloud run, and On-Prem

Abstract

Bu çalışmada, makine öğrenimi modellerinin dağıtım sürecinde meydana gelen değişikliklerin On-Premises sistemler ve bulut hizmet sağlayıcılarındaki karşılaştırmalı analizini sunmaktayım. Makine öğrenimi modellerinin başarılı bir şekilde dağıtılması, üretkenliklerini artırmayı amaçlayan işletmeler ve kuruluşlar için kritik bir öneme sahiptir. Modellerin farklı ortamlarda nasıl davrandığını anlamak ve karşılaştırmak, bilinçli kararlar vermek için büyük öneme sahiptir. AWS ve GCP gibi önde gelen ticari organizasyonlar, özelleştirilmiş web uygulamaları sunmak üzere tasarlanmış güvenilir ve maliyet etkin bulut hizmetleri sunmaktadır. Bu makalenin temel amacı, en tanınmış bulut hizmeti sağlayıcılarının anahtar özelliklerini vurgulayarak bulut müşterilerini yönlendirmek ve On-Premises seçeneği ile karşılaştırmalar yaparak bilinçli karar almayı kolaylaştırmaktır. Ayrıca, AWS Fargate ve Google Cloud Run gibi yönetilen hizmetlerin avantajlarını keşfediyoruz, bu hizmetler uygulama dağıtımını kolaylaştırmaktadır. Bu araştırma aracılığıyla, işletmelerin stratejik kararlar alarak dinamik ve rekabetçi iş dünyasında başarı elde etmelerine olanak tanıyan değerli içgörüler sağlamak amaçlanmıştır.

In this study, I present a comparative analysis of the changes occurring during the deployment process of machine learning models, both in On-Premises systems and cloud service providers. The successful deployment of machine learning models holds critical importance for businesses and organizations aiming to enhance their productivity. Understanding and comparing how models behave in different environments is of paramount significance to make informed decisions. Prominent commercial organizations like AWS and GCP offer reliable and cost-effective cloud services tailored to provide customized web applications. Our primary objective in this article is to guide cloud customers by highlighting the key features of the most recognized Cloud Service Providers and facilitating informed decision-making through comparisons with the On-Premises option. Additionally, I explore the advantages of managed services such as AWS Fargate and Google Cloud Run, which streamline application deployment. Through this research, my goal is to offer useful insights that help companies succeed in the fast-paced, cutthroat business environment by helping them make wise strategic decisions.

Related Organizations
Keywords

Computer Engineering and Computer Science and Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average