
handle: 11336/274001
Native forests around the world are widelyused for livestock grazing as they offer differentsources of forage. Nevertheless, in heterogeneous forested landscapes, forage productivity drivers are stillunclear to make precise predictions of field receptivity. Our aim is to relate landscape variables with forage productivity in forested landscapes using satelliteand ground-based data. To accomplish this, we harvested 36 enclosures in two Patagonian valleys sampled over three years. The location of the enclosuresencompassed a gradient of altitude and mean annualrainfall, across three vegetation types commonlyused for cattle raising. Using a total of 108 biomasssamples, we estimated five generalized linear models to predict forage productivity using remote sensing and ground (field) data as predictors. The mostimportant variables for predicting forage productivitywere five of remote sensing type (the integrated Normalized Difference Vegetation Index, mean annualprecipitation, vegetation type, slope, slope orientation, altitude) and two of field type (canopy opennessand herbaceous layer coverage).The highest goodnessof fit was obtained when all variables were included(D2=0.71). When ground-based information wascombined with remote sensing data, the goodness offit was higher (D2=0.65) compared with models thatonly used remote data as predictors (D2=0.49). Models obtained based on remote data are a useful toolconsidering that field information may not alwaysbe available. High forage productivity levels can be obtained in high forests or scrubs with varying valuesof canopy openness, without removing the forest. Themodels generated in this work are key for livestockstocking rates adjustment in NW Patagonia forests,and may be also re-estimated with new data in otherregions used for cattle raising worldwide, contributing to the sustainable use of native forests.
Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural; Argentina
Fil: Rusch, Verónica Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Trinco, Fabio Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Tittonell, Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Cardozo, Andrea. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
RANGELANDS, https://purl.org/becyt/ford/1.6, CATTLE, https://purl.org/becyt/ford/4.1, LIVESTOCK, STOCKING RATES, MULTI MODEL INFERENCE, https://purl.org/becyt/ford/4, https://purl.org/becyt/ford/1, BIOMASS
RANGELANDS, https://purl.org/becyt/ford/1.6, CATTLE, https://purl.org/becyt/ford/4.1, LIVESTOCK, STOCKING RATES, MULTI MODEL INFERENCE, https://purl.org/becyt/ford/4, https://purl.org/becyt/ford/1, BIOMASS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
