Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2025
License: CC BY NC SA
Data sources: CONICET Digital
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests

Authors: Trinco, Fabio Daniel; Rusch, Verónica Elena; Cardozo, Andrea; Garibaldi, Lucas Alejandro; Tittonell, Pablo;

Remote sensing and field data show complementary functions when predicting forage productivity in heterogeneous native forests

Abstract

Native forests around the world are widelyused for livestock grazing as they offer differentsources of forage. Nevertheless, in heterogeneous forested landscapes, forage productivity drivers are stillunclear to make precise predictions of field receptivity. Our aim is to relate landscape variables with forage productivity in forested landscapes using satelliteand ground-based data. To accomplish this, we harvested 36 enclosures in two Patagonian valleys sampled over three years. The location of the enclosuresencompassed a gradient of altitude and mean annualrainfall, across three vegetation types commonlyused for cattle raising. Using a total of 108 biomasssamples, we estimated five generalized linear models to predict forage productivity using remote sensing and ground (field) data as predictors. The mostimportant variables for predicting forage productivitywere five of remote sensing type (the integrated Normalized Difference Vegetation Index, mean annualprecipitation, vegetation type, slope, slope orientation, altitude) and two of field type (canopy opennessand herbaceous layer coverage).The highest goodnessof fit was obtained when all variables were included(D2=0.71). When ground-based information wascombined with remote sensing data, the goodness offit was higher (D2=0.65) compared with models thatonly used remote data as predictors (D2=0.49). Models obtained based on remote data are a useful toolconsidering that field information may not alwaysbe available. High forage productivity levels can be obtained in high forests or scrubs with varying valuesof canopy openness, without removing the forest. Themodels generated in this work are key for livestockstocking rates adjustment in NW Patagonia forests,and may be also re-estimated with new data in otherregions used for cattle raising worldwide, contributing to the sustainable use of native forests.

Fil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecología y Desarrollo Rural; Argentina

Fil: Rusch, Verónica Elena. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina

Fil: Trinco, Fabio Daniel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina

Fil: Tittonell, Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina

Fil: Cardozo, Andrea. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina

Country
Argentina
Keywords

RANGELANDS, https://purl.org/becyt/ford/1.6, CATTLE, https://purl.org/becyt/ford/4.1, LIVESTOCK, STOCKING RATES, MULTI MODEL INFERENCE, https://purl.org/becyt/ford/4, https://purl.org/becyt/ford/1, BIOMASS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!