
handle: 2117/427630
Los algoritmos evolutivos (EA) son métodos de optimización inspirados en los procesos evolutivos de la naturaleza. Estos procesos incluyen la codificación genética, la mutación, el cruce y la selección. Los EA son un enfoque flexible y resistente, capaz de resolver problemas complejos que resultan difíciles de abordar con métodos tradicionales. Esto resulta especialmente evidente en la optimización global y la optimización multiobjetivo. Dentro de esta categoría, los algoritmos evolutivos multiobjetivo (MOEA) son herramientas muy eficaces en distintos dominios. La optimización topológica busca la mejor forma de distribuir materiales y conexiones en una estructura. El objetivo es mejorar el rendimiento de la estructura respetando ciertas restricciones, como la limitación de tensiones o desplazamientos. Para evaluar los diseños, se utilizan métodos tradicionales, como los basados en elementos finitos (MEF). Esta tesis explora cómo pueden aplicarse los algoritmos evolutivos a la optimización de la topología estructural. La tesis también analiza cómo estos métodos pueden superar las limitaciones de los métodos tradicionales y lograr diseños más precisos y eficientes.
Els algorismes evolutius (EA) són mètodes d'optimització inspirats en els processos evolutius de la natura. Aquests processos inclouen la codificació genètica, la mutació, la cruïlla i la selecció. Els EA són un enfocament flexible i resistent, capaç de resoldre problemes complexos que són difícils d'abordar amb mètodes tradicionals. Això és especialment evident en l'optimització global i l'optimització multiobjectiu. Dins aquesta categoria, els algorismes evolutius multiobjectiu (MOEA) són eines molt eficaces en diferents dominis. L'optimització topològica cerca la millor manera de distribuir materials i connexions en una estructura. L'objectiu és millorar el rendiment de l'estructura respectant certes restriccions, com ara la limitació de tensions o desplaçaments. Per avaluar els dissenys, es fan servir mètodes tradicionals, com els basats en elements finits (MEF). Aquesta tesi explora com es poden aplicar els algorismes evolutius a l'optimització de la topologia estructural. La tesi també analitza com aquests mètodes poden superar les limitacions dels mètodes tradicionals i assolir dissenys més precisos i eficients.
Evolutionary algorithms (EA) are optimisation methods inspired by evolutionary processes in nature. These processes include genetic coding, mutation, crossover and selection. EAs are a flexible and resilient approach, capable of solving complex problems that are difficult to tackle with traditional methods. This is particularly evident in global optimisation and multi-objective optimisation. Within this category, multi-objective evolutionary algorithms (MOEAs) are very effective tools in different domains. Topological optimisation looks for the best way to distribute materials and connections in a structure. The aim is to improve the performance of the structure while respecting certain constraints, such as limiting stresses or displacements. Traditional methods, such as finite element methods (FEM), are used to evaluate designs. This thesis explores how evolutionary algorithms can be applied to structural topology optimisation. The thesis also discusses how these methods can overcome the limitations of traditional methods and achieve more accurate and efficient designs.
Algoritmos evolutivos, Optimización topológica, Optimització d'estructures, Structural optimization, Optimización multiobjetivo, Àrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Càlcul d'estructures
Algoritmos evolutivos, Optimización topológica, Optimització d'estructures, Structural optimization, Optimización multiobjetivo, Àrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Càlcul d'estructures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
