
В роботі розглянуто моделі та методи прогнозування фінансових часових рядів. Проаналізовано основні переваги та недоліки традиційних моделей та нейронних мереж для прогнозування без попередньої обробки даних. Застосовано вейвлетний аналіз та рекурентна нейромережа з довгою короткостроковоюпам’яттю (LSTM) для прогнозування курсу криптовалюти. Отримані результати порівнюються з результатами існуючих підходів, визначено ефективність запропоновано рішення. Models and methods of forecasting financial time series are considered in the work. The main advantages and disadvantages of traditional models and neural networks for forecasting without data preprocessing are analyzed. Wavelet analysis and a recurrent neural network with long short-term memory (LSTM) were applied to predict the exchange rate of cryptocurrency. The obtained results are compared with the results of existing approaches, the efficiency is determined and a solution is proposed.
курс криптовалюти, вейвлетний аналіз, wavelet analysis, прогнозування, financial time series, forecasting, нейронні мережі, neural networks, data preprocessing, recurrent neural network, cryptocurrency exchange rate, попередня обробка даних, рекурентна нейромережа, фінансові часові ряди
курс криптовалюти, вейвлетний аналіз, wavelet analysis, прогнозування, financial time series, forecasting, нейронні мережі, neural networks, data preprocessing, recurrent neural network, cryptocurrency exchange rate, попередня обробка даних, рекурентна нейромережа, фінансові часові ряди
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
