
Кибербезопасность в условиях глобальной информатизации общества рассматривается сегодня как одна из основных компонент национальной безопасности. В работе рассматривается подход к разработке и использованию систем киберзащиты, основанный на выделении интеллектуальной надстройки над традиционными механизмами защиты и построении единой унифицированной среды для создания и поддержки функционирования систем защиты. Представляются отдельные механизмы управления кибербезопасностью. How use of structural features in the construction of hybrid models allows supporting of models adjustment and adaptation to problem-subject environment was considered in the article. The following features were attributed to structural ones: the type of learning algorithm; kind of activation function; the number of layers of the neural network; type of neurons; way of spreading information in neural networks; method of evaluating and interpreting the results of the neural network; the format of fuzzy inference rules; fuzzification and defuzzification method; way to implement the operations of fuzzy implication and logical operations NOT, AND, OR; kind of used genetic operators and the target functions, etc. We propose to use a neural network approach as a basis for the decision of difficulty tasks using decisionsupport systems. Its effectiveness can be enhanced by: prior training or adjustment of individual neural modules for solvable problem; incorporation of knowledge about the peculiarities of the domain in the hierarchical (multilayer) neural networks structure; application of basic types of hybrid models in which neural network communicates with other information technologies.
data protection, methods of diagnosis, модели безопасности, базы данных, routed service, доступ, аутентификация, распределенные сети, monitoring, шифрование, database security model, защита информации, network protocols, сеть, complex failures, network attacks, authentication, computer information management systems, distributed networks, encryption
data protection, methods of diagnosis, модели безопасности, базы данных, routed service, доступ, аутентификация, распределенные сети, monitoring, шифрование, database security model, защита информации, network protocols, сеть, complex failures, network attacks, authentication, computer information management systems, distributed networks, encryption
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
