Powered by OpenAIRE graph
Found an issue? Give us feedback

Нейросетевое управление травлением несистемных дефектов стального проката

Нейросетевое управление травлением несистемных дефектов стального проката

Abstract

У статті запропоновано радіально-базисну нейронну мережу для ідентифікації випадкових дефектів смуги прокату за компонентами яскравостi Y та геометричними координатами (x, y), що підлягають травленню. Необхідний тиск Р подачі травильного розчину крiзь n-ю форсунку досягається подачею керуючої напруги U певної тривалості Δt і полярності А (ΔY) на електропривод шпiнделя форсунки. The article suggests a radial-basis neural network to identify random defect band rolled on luminance component Y and geometric coordinates (x, y) to be picled. Required feed pressure P picling solution through the n-th nozzle is achieved by a control voltage U a certain duration Δt and polarity A (ΔY) on the motor of nozzle’s spindle.

Related Organizations
Keywords

травление, энергосбережение, непрерывный травильный агрегат, технологические процессы, теория нейронных сетей, алгоритм Качмажа

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green