Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Учёные записки Казан...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Автоматизированное ландшафтно-экологическое картографирование городских территорий с использованием нейронных сетей (на примере г. Казани)

Автоматизированное ландшафтно-экологическое картографирование городских территорий с использованием нейронных сетей (на примере г. Казани)

Abstract

Эффективность управления крупными городами во многом определяется наличием адекватной картографической модели, системно учитывающей пространственную неоднородность территории. Методика урболандшафтного картографирования разработана слабо. Одной из причин является привлечение большого массива данных, включающих как сильно трансформированные геокомпоненты природно-территориальных комплексов, так и социально-экономическую среду. Для этого необходимо применение современных методов автоматизированного районирования, основанных на информационных технологиях. В работе рассматривается методика урбогеосистемного картографирования территории крупного города (на примере г. Казани) с использованием искусственных нейронных сетей.

The efficiency of city management to a large extent depends on the existence of appropriate cartographic model that systematically takes into account spatial inhomogeneity of an area. The methods for landscape-ecological mapping of urban areas are weakly developed at the moment. One of the reasons is a great amount of data to be involved, including both strongly transformed geocomponents of natural territorial complexes and social and economic environment. This paper deals with the method of landscape-ecological mapping of the city of Kazan using artificial neural networks

Keywords

ЛАНДШАФТНОЕ ПЛАНИРОВАНИЕ, ЛАНДШАФТНОЕ РАЙОНИРОВАНИЕ, НЕЙРОННЫЕ СЕТИ, ГИС-ТЕХНОЛОГИИ, КАРТОГРАФИРОВАНИЕ ГОРОДОВ, ГОРОДСКИЕ СИСТЕМЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities