
Вычислена линейная сложность семейства бинарных последовательностей, сформированных на основе классов биквадратичных вычетов, с оптимальной периодической автокорреляционной функцией.
We derived the linear complexity of a family of binary sequences with optimal autocorrelation constructed on the basis of biquadratic residue classes.
БИНАРНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ, ЛИНЕЙНАЯ СЛОЖНОСТЬ, КОНЕЧНОЕ ПОЛЕ, КЛАССЫ БИКВАДРАТИЧНЫХ ВЫЧЕТОВ
БИНАРНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ, ЛИНЕЙНАЯ СЛОЖНОСТЬ, КОНЕЧНОЕ ПОЛЕ, КЛАССЫ БИКВАДРАТИЧНЫХ ВЫЧЕТОВ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
