Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Information and Cont...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Автоматическая обработка и статистический анализ новостного текстового корпуса для модели языка системы распознавания русской речи

Автоматическая обработка и статистический анализ новостного текстового корпуса для модели языка системы распознавания русской речи

Abstract

A procedure of an automatic processing of a text corpus, collected from a number of news Internet sites for creation of a n-gram model of the Russian spoken language, is described in this paper. A statistic analysis of the corpus is presented, the results of the computation of appearance of different n-grams are given. A review of the state-of-the-art statistical language models is presented as well.

Описывается процесс автоматической обработки текстового корпуса, собранного из новостных лент ряда интернет-сайтов, для создания вероятностной n-граммной модели разговорного русского языка. Приводится статистический анализ данного корпуса, даются результаты по подсчету частоты появления различных n-грамм слов. Представлен обзор существующих типов статистических моделей языка.

Keywords

МОДЕЛЬ ЯЗЫКА, ТЕКСТОВЫЙ КОРПУС РУССКОГО ЯЗЫКА, АВТОМАТИЧЕСКАЯ ОБРАБОТКА ТЕКСТА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold