Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Нейромоделирование свойств пленок медьсодержащего пан для создания газоанализаторов

Нейромоделирование свойств пленок медьсодержащего пан для создания газоанализаторов

Abstract

Исследована целесообразность моделирования значения коэффициента газочувствительности по технологическим параметрам процесса получения пленок Cu -содержащего полиакрилонитрила (ПАН) на основе использования искусственных нейронных сетей. Посредством нейронной сети установлены оптимальные технологические параметры создания эффективных сенсоров газа к диоксиду азота. Качество работы искусственной нейронной сети определялось по среднеквадратичной ошибке прогнозирования значений свойства на обучающей выборке, по коэффициенту корреляции между прогнозируемыми и экспериментальными значениями свойства на обучающей выборке и среднеквадратичной ошибке прогноза на контрольной выборке. Для получения пленок использован метод некогерентного ИК-излучения.

Expediency of modeling the value of factor of gas-sensitivity on technological parameters of process of Cu-containing polyacrylonitrile (PAN) films fabrication by using artificial neural networks is investigated. Optimal technological parameters of creation of the effective sensors to nitrogen dioxide are established by means of the neural network. Quality of work of the artificial neural network was determined by a root-mean-square error of predicting of values of property on a training sample, on factor of correlation between predicted and experimental values of property on a training sample and a root-mean-square error of a forecast on a control sample. To fabricate the film method of incoherent IR-radiation is used.

Keywords

НЕЙРОННАЯ СЕТЬ, ПОЛИАКРИЛОНИТРИЛ, ИК-ОТЖИГ, ЭЛЕКТРОПРОВОДЯЩИЕ ОРГАНИЧЕСКИЕ ПОЛИМЕРЫ, ГАЗОЧУВСТВИТЕЛЬНЫЕ МАТЕРИАЛЫ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average