
Рассматривается автономная динамическая система, которая описывается квазилинейными дифференциальными уравнениями. Для интегрирования уравнений движения таких систем используются интегральные многообразия. Данная теория применяется для исследования астатического гироскопа.
Autonomous dynamic system which described by autonomous quasilinear differential equations is researched. Integral varieties are used to integration equation of motion of such system. The method applied in researching of astatic gyroscope.
КВАЗИЛИНЕЙНАЯ СИСТЕМА, ИНТЕГРАЛЬНОЕ МНОГООБРАЗИЕ, ПОЛИНОМИАЛЬНЫЕ ИНТЕГРАЛЫ, АСТАТИЧЕСКИЙ ГИРОСКОП
КВАЗИЛИНЕЙНАЯ СИСТЕМА, ИНТЕГРАЛЬНОЕ МНОГООБРАЗИЕ, ПОЛИНОМИАЛЬНЫЕ ИНТЕГРАЛЫ, АСТАТИЧЕСКИЙ ГИРОСКОП
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
