
The paper considers the adaptation problems of time series predictive models (autoregression moving average models) that are used in the estimation problems of dynamical system state. The need for adaptation is caused, in particular, by the limited length of the time series, which are used for finding the initial estimates of model parameters. It is proposed to use the method of generalized stochastic gradient for building adaptive procedures. The application of this method is shown to ensure good convergence of parameter adjustment processes.
Рассматриваются проблемы адаптации прогнозирующих моделей временных рядов (моделей АРСС), которые используются в задачах оценивания состояния динамических систем. Необходимость адаптации вызвана, в частности, ограниченной длиной временных рядов, по которым находятся первоначальные оценки параметров моделей. Предлагается для построения адаптивных процедур использовать метод обобщенного стохастического градиента. Показано, что применение данного метода обеспечивает хорошую сходимость процессов подстройки параметров.
НЕДООПРЕДЕЛЕННЫЕ СИСТЕМЫ, ИДЕНТИФИКАЦИЯ, ПРОГНОЗИРУЮЩИЕ МОДЕЛИ, ПРОЦЕССЫ АВТОРЕГРЕССИИ, КРИТЕРИИ АДЕКВАТНОСТИ, ВРЕМЕННЫЕ РЯДЫ, ОПТИМИЗАЦИЯ
НЕДООПРЕДЕЛЕННЫЕ СИСТЕМЫ, ИДЕНТИФИКАЦИЯ, ПРОГНОЗИРУЮЩИЕ МОДЕЛИ, ПРОЦЕССЫ АВТОРЕГРЕССИИ, КРИТЕРИИ АДЕКВАТНОСТИ, ВРЕМЕННЫЕ РЯДЫ, ОПТИМИЗАЦИЯ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
