Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik Chuvashskogo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Кластеризация пользователей рекламной сети по социально-демографическим признакам

Кластеризация пользователей рекламной сети по социально-демографическим признакам

Abstract

Рассмотрены проблемы использования социально-демографической информации о поль­зователях при прогнозировании кликов в рекламной сети методами машинного обучения. Предложены варианты предварительной подготовки социально-демографи­че­ских факторов для максимизации извлекаемой из них информации о кликах, среди которых использовались построение регрессии и кластеризация пользователей. Произведено сравнение предложенных вариантов с использованием метрики, основанной на правдоподобии обученной модели.

The present article considers the problems of exploiting the sociodemographic data about users in predicting clicks in a banner system via machine learning methods. Several variants of pre-processing sociodemographic data to maximize retrievable information about clicks are proposed, among which are: regression model and user clistering. Comparison of those is done using a metric based on the likelihood of the trained models.

Keywords

ИНТЕРНЕТ-РЕКЛАМА, ПРОГНОЗИРОВАНИЕ КЛИКОВ, МАШИННОЕ ОБУЧЕНИЕ, СОЦИАЛЬНО-ДЕМОГРАФИЧЕСКИЕ ПРИЗНАКИ, РЕГРЕССИЯ, КЛАСТЕРИЗАЦИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold