Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Проблемы управленияarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Методология экспертно-классификационного анализа в задачах управления и обработки сложноорганизованных данных (история и перспективы развития)

Методология экспертно-классификационного анализа в задачах управления и обработки сложноорганизованных данных (история и перспективы развития)

Abstract

The history and perspectives of development of complex organized data structure-ranging analysis methodology a swiftly developing scientific branch both in Russia and abroad, which emerged from the statistical methods of data processing and pattern recognition methods are examined. Both theoretical and applied results drawn in this scientific field are described.

Рассмотрена история и перспективы развития методологии структурно-классификационного анализа сложноорганизованных данных стремительно развивающееся как в России, так и за рубежом направления, «выросшего» из статистических методов обработки данных и распознавания образов. Описаны как теоретические, так и прикладные полученные результаты.

Keywords

ЭКСПЕРТНО-КЛАССИФИКАЦИОННЫЙ АНАЛИЗ, АВТОМАТИЧЕСКАЯ КЛАССИФИКАЦИЯ ЭКСТРЕМАЛЬНАЯ ГРУППИРОВКА ПАРАМЕТРОВ, КУСОЧНАЯ АППРОКСИМАЦИЯ СЛОЖНЫХ ЗАВИСИМОСТЕЙ, СТРУКТУРНОЕ ПРОГНОЗИРОВАНИЕ, МНОГОВАРИАНТНАЯ ЭКСПЕРТИЗА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold