
We present two algorithms which work with equations over natural numbers. The first one finds the decomposition of a given algebraic set into the union of its irreducible components. The second algorithm calculates the radical of a system of equations over natural numbers.
Приведены два алгоритма, работающих с системами уравнений над моноидом натуральных чисел N. Первый алгоритм находит разложение произвольного алгебраического множества над N в объединение неприводимых компонент. Второй алгоритм вычисляет радикал системы S над N.
УНИВЕРСАЛЬНАЯ АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ, НАТУРАЛЬНЫЕ ЧИСЛА, РАДИКАЛ
УНИВЕРСАЛЬНАЯ АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ, НАТУРАЛЬНЫЕ ЧИСЛА, РАДИКАЛ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
