Powered by OpenAIRE graph
Found an issue? Give us feedback

Об устойчивости дифференциальных уравнений первого порядка с параметром на комплексной плоскости

Об устойчивости дифференциальных уравнений первого порядка с параметром на комплексной плоскости

Abstract

This paper considers the stability of differential equations with a parameter in the complex plane. The main issues examined in this article is the question of stability and asymptotic stability of solutions of the corresponding differential equations with a parameter, as well as the question of the existence and uniqueness of solutions of the Cauchy problem. We formulate the theorem on the existence and uniqueness of solutions, as well as the continuity and differentiability of solutions to the parameter and the initial data. Defines two types of stability. The first is the transfer of the classical definition of stability in case of equations in the complex domain. The second generalizes the classical definition. Formulated the theorem on stability, which refers to the first and second type of stability. This theorem is illustrated by a specific example.

В работе рассматривается устойчивость дифференциальных уравнений с параметром на комплексной плоскости. Основным вопросом, изучаемым в данной статье, является вопрос устойчивости и асимптотической устойчивости решений соответствующих дифференциальных уравнений с параметром, а также вопрос существования и единственности решения задачи Коши. В работе сформулированы теоремы о существовании и единственности решения, а также о непрерывности и дифференцируемости решения по параметру и начальным данным. Определяются два типа устойчивости. Первый является переносом классического определения устойчивости на случай уравнения в комплексной области. Второй обобщает классическое определение. Сформулирована теорема об устойчивости, которая относится и к первому, и ко второму типу устойчивости. Данная теорема проиллюстрирована конкретным примером.

Keywords

ДИФФЕРЕНЦИРУЕМОСТЬ РЕШЕНИЙ., DIFFERENTIABILITY OF SOLUTIONS., НЕПРЕРЫВНОСТЬ, СУЩЕСТВОВАНИЕ, УСЛОВИЕ ЛИПШИЦА, НЕУСТОЙЧИВОСТЬ, АСИМПТОТИЧЕСКАЯ УСТОЙЧИВОСТЬ, УСТОЙЧИВОСТЬ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold