
Рассмотрена древовидная модель соседства элементов марковского случайного поля принадлежностей к текстурным классам как марковская цепь в задаче распознавания растровых изображений. Предложены алгоритмы подбора диагонального элемента марковской матрицы условных вероятностей переходов и весов графов в линейной комбинации для максимизации апостериорных вероятностей скрытых классов.
The tree like graphic model of a Markov random field of hidden classes wasproposed as a Markov chain to recognize the raster textured images. We developed algorithms to select the optimal value of the diagonal element of Markov transition matrix and weights for the linear combination of acyclic adjacency graphs to maximize aposteriori probabilities of hidden classes.
РАСПОЗНАВАНИЕ ОБРАЗОВ,МАШИННОЕ ОБУЧЕНИЕ,МАРКОВСКОЕ СЛУЧАЙНОЕ ПОЛЕ,МАРКОВСКАЯ ЦЕПЬ
РАСПОЗНАВАНИЕ ОБРАЗОВ,МАШИННОЕ ОБУЧЕНИЕ,МАРКОВСКОЕ СЛУЧАЙНОЕ ПОЛЕ,МАРКОВСКАЯ ЦЕПЬ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
