Powered by OpenAIRE graph
Found an issue? Give us feedback

Идентификация изображений рукописных символов на основе преобразования масштаба и сортировки полярных координат

Идентификация изображений рукописных символов на основе преобразования масштаба и сортировки полярных координат

Abstract

Рассматривается распознавание графических представлений рукописных символов на примере строчных букв русского алфавита различного почерка и средней степени искажения. Ставится задача устойчивой целочисленной идентификации и классификации объектов рассматриваемого типа. Предлагается метод реализации поставленной задачи на основе масштабирования с предварительной обработкой точек изображения и поиска экстремальных радиусов полярных координат при помощи сортировки. Дан алгоритм вычисления толщины контура изображения символа, описывается метод обработки полярных координат уникально-обособленных точек и получения на его основе целочисленных идентификаторов изображения рукописного символа. Предлагается совмещение данного подхода с методом идентификации рукописных символов на основе вложенных последовательностей экстремумов, в результате которого достигается повышение устойчивости идентификации. Приводятся результаты программного и вычислительного эксперимента получения уникально-обособленных точек, а также результаты их обработки и формирования с применением метода вложенных последовательностей экстремумов. Даны примеры целочисленных идентификаторов в виде матриц перестановок индексов экстремальных радиусов и их углов. Предложен принцип идентификации на основе матриц, строками которых являются перестановки индексов.

The recognition of graphical representations of the handwritten symbols on the example of lowercase Russian letters, which are different by handwriting and have the average degree of distortion, is considered. The goal is a stable identification based on integer’s signs and classification the objects of this type. A method based on scaling with preprocessing of image points and searching local extreme radii of polar coordinate by sorting is proposed. An algorithm for calculating the symbol image outline thickness is given. A method for processing a polar coordinate of unique-isolated points and based on it an algorithm for obtaining integer’s identifier of a handwritten symbol image are described. It is proposed to combine this approach with a method of identifying handwritten symbols based on nested sequences of extrema to achieve the increased stability identification as a result. The results of program and calculation experiment to produce unique-isolated points, as well as the results of their processing and forming method using nested sequences extrema, are given. There are examples of integer’s identifiers in the form of matrices permutation of the indices of extreme radii and their angles. The principle of identification based on matrix whose rows are permutations of the indices is proposed.

Keywords

ИДЕНТИФИКАЦИЯ ИЗОБРАЖЕНИЙ РУКОПИСНЫХ СИМВОЛОВ, ВЛОЖЕННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ ЭКСТРЕМАЛЬНЫХ ПРИЗНАКОВ В ПОЛЯРНЫХ КООРДИНАТАХ, ЦЕЛОЧИСЛЕННЫЕ ИДЕНТИФИКАТОРЫ, ПЕРЕСТАНОВКИ ИНДЕКСОВ, УНИКАЛЬНО-ОБОСОБЛЕННЫЕ ТОЧКИ ИЗОБРАЖЕНИЯ, МАСШТАБИРОВАНИЕ ИЗОБРАЖЕНИЯ, ВЫЧИСЛЕНИЕ ТОЛЩИНЫ ЛИНИИ КОНТУРА, INTEGER'S IDENTIFIERS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average