Powered by OpenAIRE graph
Found an issue? Give us feedback

Об одном парадоксе в теоремах о методе Ньютона

Об одном парадоксе в теоремах о методе Ньютона

Abstract

Теорема Мысовских о сходимости метода Ньютона решения нелинейного уравнения в банаховом пространстве, использующая в формулировке оценку погрешности начального приближения, требует более сильного ограничения на характерный параметр, чем аналогичнаятеорема Мысовских об упрощенном методе Ньютона. Так как основной метод Ньютона использует больше информации на каждом шаге, чем упрощенный (значения производной на текущих итерациях вместо ее значения в начальном приближении), эти две теоремы образуют парадокс. Было неясно, то ли такова «природа вещей» или первая теорема недостаточно сильна. В скалярном случае оказалось, что ограничение на характерный параметр, обеспечивающее сходимость основного метода, можно ослабить так, что парадокс исчезнет. Показано также, что новое ограничение на характерный параметр не может быть ослаблено. Результаты верны как для оригинальных посылок первой теоремы Мысовских, так и для продвинутой версии, где заменяется максимум второй производной рассматриваемой функции на константу Липшица ее первой производной

Mysovskikh’ theorem about Newton method of solving a nonlinear equation in Banach space using an estimate of initial approximation error demands stronger restriction of some characteristic parameter than in Mysovskikh’ theorem about simplified Newton method. As the latter method usesless information on each step than the basic one, i.e. a value of derivative on the regarded function in initial approach instead of the one in each current approach, two theorems form a paradox. It was not clear if it was a “nature of things” or the first theorem was not enough strong. It appeared in a scalar case that the restriction on the charateristic parameter sufficient for convergence can be weakened so that the paradox disappears. It is also shown that the new restriction cannot be weakened. The results are valid as for original assumption of the theorem and for its developed version where the maximum value of the second derivative of the considered function is replaced by Lipschitz’ constant of the first derivative.

Keywords

ИТЕРАЦИИ, ИТЕРАТИВНЫЙ МЕТОД, СХОДИМОСТЬ, ОБЛАСТЬ СХОДИМОСТИ, СКОРОСТЬСХОДИМОСТИ, МЕТОД НЬЮТОНА, СПЛАЙН, NEWTON’S METHOD

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold