Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Краевая задача для вырождающегося уравнения третьего порядка

Краевая задача для вырождающегося уравнения третьего порядка

Abstract

The article deals with a boundary value problem in a rectangular area for a third-order degenerate equation with minor terms. The study of such equations is caused by both a theoretical and applied interest (known as VT (viscous transonic) the equation can be found in gas dynamics). Imposing some restrictions on the coefficients of lower derivatives and using the method of energy integrals, the unique solvability of the problem is demonstrated. The solution of the problem is sought by separation of variables (Fourier method), thus two one-dimensional boundary value problems for ordinary differential equations are obtained. According to the variable y we have the problem on eigenvalues and eigenfunctions for a second-order degenerate equation. The eigenvalues and eigenfunctions are found. Eigenfunctions are the first-order Bessel functions. In order to obtain some necessary estimates the spectral problem reduces to an integral equation by constructing the Green's function. Hereafter, Bessel inequality is used. The possibility of expansion of boundary functions in the system of eigenfunctions is also shown. In order to obtain the necessary a priori estimates for the solution of one-dimensional boundary value problem with respect to the variable x and its derivatives, the problem reduces to a second-order Fredholm integral equation, with the help of Green's function. The estimates of Green's function and its derivatives are obtained. Fredholm equation is solved by the method of successive approximations, and the necessary estimates for this solution and its derivatives are obtained. The formal solution of the boundary value problem is obtained in the form of an infinite series in eigenfunctions. In order to prove the uniform convergence of the last series composed of the partial derivatives, first using the Cauchy-Bunyakovsky inequality, the series consisting of two variables is decomposed into two one-dimensional series, and then all of the obtained estimates mentioned above and estimates for the Fourier coefficients are used.

В последнее время всё больше внимание специалистов привлекают неклассические уравнениям математической физики. Связано это как с теоретическим интересом, так и практическим, например вырождающиеся уравнения третьего порядка встречаются в теории трансзвуковых течений. Получены достаточные условия единственности и существования решения одной краевой задачи в прямоугольной области для вырождающегося уравнения третьего порядка с кратными характеристиками. Решение получено в виде бесконечного ряда по собственным функциям.

Keywords

ВЫРОЖДАЮЩИЕСЯ УРАВНЕНИЯ,ИНТЕГРАЛЫ ЭНЕРГИИ,МЕТОДФУРЬЕ,ФУНКЦИЯ ГРИНА,ФУНКЦИЯ БЕССЕЛЯ,НЕРАВЕНСТВО БЕССЕЛЯ,РАЗЛОЖЕНИЕ В РЯД ПО СОБСТВЕННЫМ ФУНКЦИЯМ,DEGENERATE EQUATIONS,ENERGY INTEGRALS,FOURIER METHOD,GREEN''S FUNCTION,BESSEL FUNCTION,BESSEL'S INEQUALITY,EIGENFUNCTION EXPANSION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold