
A hidden semi-Markov QP-model is considered; and the way it could be embedded in a general hidden semi-Markov model is shown. The estimation problem (the first of three classical theory problems of the hidden Markov models and hidden semi-Markov models) is solved for the hidden semi-Markov QP-model. The solution is based on Shun-Zheng Yu forward algorithm for a general hidden semi-Markov model. This approach differs from the traditional one and employs posterior probabilities. The estimation problem solution of the hidden semi-Markov QP-model is an important step in solving the following more specific problem. That is the selection problem based on the recorded in the data channel model error sequence from the base of hidden semi-Markov QP-models that generates the closest to the channel sequence error streams. The fitting problem solution will make it possible to evaluate the correcting capability of the noise-free codec towards errors of various types, and to select the optimal codec for a particular communication channel on the basis of the computer simulation experiments.
Рассматривается скрытая полумарковская QP-модель и показывается, каким образом она может быть вложена в общую скрытую полумарковскую модель. Для скрытой полумарковской QP-модели решается задача оценивания первая из трех классических задач теории скрытых марковских и полумарковских моделей. В основе решения этой задачи лежит разработанный Shun-Zheng Yu алгоритм прямого хода для общей скрытой полумарковской модели, отличный от традиционного и основанный на использовании апостериорных вероятностей. Решение задачи оценивания скрытой полумарковской QP-модели является важным этапом в решении задачи подбора по регистрируемой в канале передачи данных последовательности ошибок модели из базы скрытых полумарковских QP-моделей, которая генерирует наиболее близкие к канальной последовательности потоки ошибок. Решение задачи подбора сделает возможным на основе компьютерных имитационных экспериментов оценивать корректирующие способности помехоустойчивых кодеков по отношению к ошибкам различного типа и подбирать оптимальный кодек к конкретному каналу связи.
МОДЕЛЬ ИСТОЧНИКА ОШИБОК,ERROR SOURCE MODEL,ПОТОК ОШИБОК,ERROR FLOW,ЦИФРОВОЙ КАНАЛ СВЯЗИ,DIGITAL TRANSMISSION CHANNEL,СКРЫТАЯ ПОЛУМАРКОВСКАЯ МОДЕЛЬ,HIDDEN SEMI-MARKOV MODEL,ЗАДАЧА ОЦЕНИВАНИЯ,EVALUATION PROBLEM
МОДЕЛЬ ИСТОЧНИКА ОШИБОК,ERROR SOURCE MODEL,ПОТОК ОШИБОК,ERROR FLOW,ЦИФРОВОЙ КАНАЛ СВЯЗИ,DIGITAL TRANSMISSION CHANNEL,СКРЫТАЯ ПОЛУМАРКОВСКАЯ МОДЕЛЬ,HIDDEN SEMI-MARKOV MODEL,ЗАДАЧА ОЦЕНИВАНИЯ,EVALUATION PROBLEM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
