
In the present paper we consider the homogeneous Riemann–Hilbert problem in the complex upper half-plane with a countable set of coefficient discontinuities and two-side curling at infinity. In the case the problem index has a power singularity of order less than 1/2, in a special functional class, we obtain general solution and completely investigate the solvability of the problem.
Рассмотрена однородная задача Гильберта для верхней полуплоскости со счетным множеством точек разрыва первого рода коэффициентов краевого условия и двусторонним завихрением на бесконечности. В случае, когда индекс задачи имеет степенную особенность порядка меньше 1/2 в специальном классе функций получены формулы общего решения и проведено полное исследование разрешимости задачи.
КРАЕВАЯ ЗАДАЧА ГИЛЬБЕРТА, ЗАВИХРЕНИЕ НА БЕСКОНЕЧНОСТИ, БЕСКОНЕЧНЫЙ ИНДЕКС, ЦЕЛЫЕ ФУНКЦИИ
КРАЕВАЯ ЗАДАЧА ГИЛЬБЕРТА, ЗАВИХРЕНИЕ НА БЕСКОНЕЧНОСТИ, БЕСКОНЕЧНЫЙ ИНДЕКС, ЦЕЛЫЕ ФУНКЦИИ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
