Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ПАРЕТО-ОПТИМАЛЬНОЕ РЕШЕНИЕ МНОГОКРИТЕРИАЛЬНОЙ ЗАДАЧИ СИНТЕЗА РОБАСТНЫХ РЕГУЛЯТОРОВ МНОГОМАССОВЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МНОГОРОЕВОЙ СТОХАСТИЧЕСКОЙ МУЛЬТИАГЕНТНОЙ ОПТИМИЗАЦИИ

ПАРЕТО-ОПТИМАЛЬНОЕ РЕШЕНИЕ МНОГОКРИТЕРИАЛЬНОЙ ЗАДАЧИ СИНТЕЗА РОБАСТНЫХ РЕГУЛЯТОРОВ МНОГОМАССОВЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МНОГОРОЕВОЙ СТОХАСТИЧЕСКОЙ МУЛЬТИАГЕНТНОЙ ОПТИМИЗАЦИИ

Abstract

Purpose. Developed the method for solving the problem of multiobjective synthesis of robust control by multimass electromechanical systems based on the construction of the Pareto optimal solutions using multiswarm stochastic multi-agent optimization of particles swarm, which reduces the time of determining the parameters of robust controls multimass electromechanical systems and satisfy a variety of requirements that apply to the work of such systems in different modes. Methodology. Multiobjective synthesis of robust control of multimass electromechanical systems is reduced to the solution of solving the problem of multiobjective optimization. To correct the above problem solving multiobjective optimization in addition to the vector optimization criteria and constraints must also be aware of the binary preference relations of local solutions against each other. The basis for such a formal approach is to build areas of Pareto-optimal solutions. This approach can significantly narrow down the range of possible solutions of the problem of optimal initial multiobjective optimization and, consequently, reduce the complexity of the person making the decision on the selection of a single version of the optimal solution. Results. The results of the synthesis of multi-criteria electromechanical servo system and a comparison of dynamic characteristics, and it is shown that the use of synthesized robust controllers reduced the error guidance working mechanism and reduced the system sensitivity to changes in the control parameters of the object compared to the existing system with standard controls. Originality. For the first time, based on the construction of the Pareto optimal solutions using a multiswarm stochastic multi-agent optimization particle algorithms improved method for solving formulated multiobjective multiextremal nonlinear programming problem with constraints, to which the problem of multiobjective synthesis of robust controls by multimass electromechanical systems that can significantly reduce the time to solve problems and meet a variety of requirements that apply to the multimass electromechanical systems in different modes. Practical value. Practical recommendations on reasonable selection of the target vector of robust control by multimass electromechanical systems. Results of synthesis of electromechanical servo system shown that the use of synthesized robust controllers reduced the error guidance of working mechanism and reduce the system sensitivity to changes of plant parameters compared to a system with standard controls.

Усовершенствован метод многокритериального синтеза робастного управления многомассовыми электромеханическими системами на основе построения Парето-оптимальных решений и с учетом бинарных отношений предпочтения локальных критериев с помощью алгоритмов многороевой стохастической мультиагентной оптимизации, что позволяет существенно сократить время решения задачи и удовлетворить разнообразным требованиям, которые предъявляются к работе систем в различных режимах. Приведены результаты сравнений динамических характеристик электромеханических систем с синтезированными регуляторами.

Keywords

МНОГОМАССОВАЯ ЭЛЕКТРОМЕХАНИЧЕСКАЯ СИСТЕМА,МНОГОКРИТЕРИАЛЬНЫЙ СИНТЕЗ,МНОГОРОЕВАЯ СТОХАСТИЧЕСКАЯ МУЛЬТИАГЕНТНАЯ ОПТИМИЗАЦИЯ,ПАРЕТО-ОПТИМАЛЬНОЕ РЕШЕНИЕ,MULTIMASS ELECTROMECHANICAL SYSTEM,MULTIOBJECTIVE SYNTHESIS,MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION,PARETO OPTIMAL SOLUTION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold