
Рассматривается задача построения программ-интерпретаторов дыхательных шумов с индивидуальной настрой-кой на параметры устройства для регистрации сигналов. Показано, что из-за различий технических характеристик электронных стетоскопов при использовании нейросетевых технологий для классификации дыхательных шумов необходима перенастройка шкал для оценки признаков объектов обучающей выборки. Приведено описание архитектуры и особенностей ПО системы для анализа записей дыхательных шумов; выделена подсистема настройки на модель регистратора шумов, обеспечивающая генерацию индивидуального набора правил классификации для каждой модели стетоскопа. Правила формируются с помощью генерации нейроподобных иерархических структур, каждая из которых обобщает представления о нескольких классах дыхательных шумов, зарегистрированных стетоскопами одной модели. Описания классов создаются с помощью нечетких признаков. Генерация шкал для их оценки осуществляется автоматически. Рассмотрены результаты работы системы с тремя различными видами устройств регистрации дыхательных шумов (3M Littmann 4100, авторское устройство и устройство КoРА-03М1), характеристики которых существенно различаются. Анализ результатов работы программы выявил существенные различия в параметрах классификаторов нейроподобных иерархических структур, сформированных для разных средств регистрации шумов. Однако варианты сгенерированных правил показали близкие по точности (88–93 %) результаты работы интерпретаторов дыхательных шумов для каждой модели электронного стетоскопа.
The article considers the problem of constructing respiratory sounds interpreter programs that are customized for signal recording device parameters. When using neural network technologies for respiratory sounds classification, technical characteristics of electronic stethoscopes are different. Thus, the paper shows that it is necessary to readjust scales for assessing learning sample objects’ features. The paper describes the architecture and features of the software to analyze respiratory sounds records; it highlightes the subsystem for adjusting to a noises recorder, which allows generating an individual set of classifica-tion rules for each stethoscope model. These rules are generated by neural-like hierarchical structures; each of them synthesizes concepts of several respiratory sounds classes recorded by the stethoscopes of one model. The class descriptions are created using fuzzy features. The generation of scales for their evaluation is automated. The paper considers the results of system operation with 3 different types of respiratory sounds registration devices (3M Littmann 4100, an original device Pat. 66174 and KoRA-03M1 device) that have different characteristics. The analysis of the results revealed significant differences in the parameters of the classifiers of neuron-like hierarchical structures formed for different respiratory sounds recording devices. However, the generated rules showed similar results (88–93 % accuracy) of respiratory sounds interpreters for each electronic stethoscope model.
нейроподобная иерархическая структура, растущие пирамидальные сети, дыхательные шумы, аускультация, электронный стетоскоп, программа классификации, нечеткие признаки
нейроподобная иерархическая структура, растущие пирамидальные сети, дыхательные шумы, аускультация, электронный стетоскоп, программа классификации, нечеткие признаки
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
