Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik Samarskogo G...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Обобщённое интегральное преобразование Лапласа и его применение к решению некоторых интегральных уравнений

Обобщённое интегральное преобразование Лапласа и его применение к решению некоторых интегральных уравнений

Abstract

We present integral transforms $\widetilde {\mathcal L}\left\{f(t);x\right\}$ and $\widetilde {\mathcal L}_{\gamma_1,\gamma_2,\gamma} \left\{f(t);x\right\}$, generalizing the classical Laplace transform. The $(\tau, \beta)$-generalized confluent hypergeometric functions are the kernels of these integral transforms. At certain values of the parameters these transforms coincides with the famous classical Laplace transform. The inverse formula for the transforms is given. The convolution theorem for transform $\widetilde {\mathcal L}\left\{f(t);x\right\}$ is proven. Volterra integral equations of the first kind with core containing the generalized confluent hypergeometric function ${\mathstrut}_1\Phi{\mathstrut}_1^{\tau,\beta}(a;c;z)$ are considered. The above equation is solved by the method of integral transforms. The treatment of integral transforms is applied to get the desired solution of the integral equation. The solution is obtained in explicit form.

Рассматриваются обобщённые интегральные преобразования Лапласа, которые в ядре содержат обобщённую конфлюэнтную гипергеометрическую функцию ${\mathstrut}_1\Phi{\mathstrut}_1^{\tau,\beta}(a;c;z)$. С использованием свойств этих преобразований для них получен аналог теоремы о свёртке. Методом интегральных преобразований решены интегральные уравнения Вольтерра первого рода, содержащие в ядре конфлюэнтную гипергеометрическую функцию. При решении интегральных уравнений использовались формулы обращения введённых интегральных преобразований, полученные автором ранее.

Keywords

ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА,LAPLACE INTEGRAL TRANSFORM,ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ,INTEGRAL EQUATIONS,ОБОБЩЁННАЯ ГИПЕРГЕОМЕТРИЧЕСКАЯ ФУНКЦИЯ,GENERALIZED HYPERGEOMETRIC FUNCTION

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold