Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Разработка методики построения функции принадлежности для показателей системы нечеткого логического вывода о реализации ИТ-стратегии

Разработка методики построения функции принадлежности для показателей системы нечеткого логического вывода о реализации ИТ-стратегии

Abstract

При проектировании системы нечеткого логического вывода возникает необходимость выбора функции принадлежности для входных и выходных показателей. Предлагается не выбирать функции, которые предложены в теории нечетких множеств, а разработать свою функцию принадлежности с адаптивным видом и параметрами, которая более точно интерпретирует значения показателей системы нечеткого логического вывода. Рассматривается методика выбора и построения трапециевидной функции принадлежности и подбирается регулярная и сингулярная аппроксимирующие функции.

To design fuzzy inference system it is necessary to choose the membership functions of the input and output indicators. It is not proposed to select the features that are offered in the theory of fuzzy sets, but develop own membership function with adaptive parameters and view that more accurately interpret the values of fuzzy inference system. The technique of choice and build a trapezoidal membership function is considered. The regular and singular approximation functions are selected.

Keywords

ФУНКЦИЯ ПРИНАДЛЕЖНОСТИ, СИСТЕМА НЕЧЕТКОГО ЛОГИЧЕСКОГО ВЫВОДА, СИНГУЛЯРНАЯ АППРОКСИМИРУЮЩАЯ ФУНКЦИЯ, РЕГУЛЯРНАЯ АППРОКСИМИРУЮЩАЯ ФУНКЦИЯ, ТЕОРИЯ НЕЧЕТКИХ МНОЖЕСТВ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average