Powered by OpenAIRE graph
Found an issue? Give us feedback

Периодическая составляющая финитного сигнала в пространстве Лебега

Периодическая составляющая финитного сигнала в пространстве Лебега

Abstract

Важной прикладной задачей является спектральный анализ финитных сигналов [1]. Класси¬ческий подход к решению данной задачи анализ Фурье и различные его модификации (например вейвлет-анализ). Анализ Фурье наиболее приспособлен для исследования сигналов рассматриваемых на всей временной оси. Финитные сигналы, определенные на конечном промежутке, при этом при¬ходится "искусственно" заменять на неограниченные. Иногда для исследования сигнала не требуется определения его спектра, а достаточно найти его периодическую составляющую. В данной работе предлагается непосредственный прямой вариацион¬ный метод нахождения периодической составляющей финитных сигналов в пространствах Лебега L2 [a, b] ив более общем случае в пространствах Соболева Wp [a, b]. Находится наилучшая в смыс¬ле норм этих пространств периодическая составляющая. Для конечных цифровых сигналов данный алгоритм реализован в системе MatLab.

Spectral analysis of signals is An important applied problem, in particular the allocation of the periodic component. The classical approach to this task solution Fourier Analysis and its various modifications (such as wavelet analysis). Fourier analysis is best suited for the study of signals under consideration for the entire time axis. The finite signals are defined on a finite interval with the "artificial" must be replaced at no limited. In this paper, a direct variational method for studying finite signals in Lebesgue spaces L2 [a, b] and more generally in the Sobolev spaces Wp[a,b]. Located in the best sense of the norms of these spaces, the periodic component. For finite digital signals, the algorithm is implemented in the MatLab.

Keywords

ПЕРИОДИЧЕСКАЯ СОСТАВЛЯЮЩАЯ, СПЕКТРАЛЬНЫЙ АНАЛИЗ, АНАЛИЗ ФУРЬЕ, ВАРИАЦИ¬ОННЫЙ МЕТОД, КОНЕЧНЫЙ СИГНАЛ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average