
Предложено использование вероятностной нейронной сети с проверкой однородности в задаче распознавания изображений. Показано, что это решение является оптимальным в байесовском смысле, если задача рассматривается в терминах статистической проверки однородности выборок признаков входного и эталонных изображений. Рассматривается проблема недостаточной вычислительной эффективности оптимального алгоритма при наличии многих альтернативных классов и большой размерности признакового пространства. Исследуется возможность её преодоления для случая дискретных признаков путём синтеза нового критерия, основанного на сопоставлении гистограмм признаков входного и эталонных изображений. Показано, что частным случаем такого критерия является правило ближайшего соседа с популярными мерами близости хи-квадрат и Йенсена–Шеннона. Приведены результаты экспериментального исследования в задаче идентификации личности по фотографии лица для популярных баз данных AT&T и JAFFE. Продемонстрировано, что предложенный подход существенно превосходит по качеству традиционное решение, основанное на сведении распознавания к задаче статистической классификации.
The usage of the probabilistic neural network with homogeneity testing is proposed in image recognition problem. This decision is shown to be optimal in Bayesian terms if the task is formulated as a statistical testing for homogeneity of query and model images' feature sets. The problem of the lack of computing efficiency with many classes and large dimensions of feature set is discovered. The possibility of its overcoming in the case of discrete features is explored by synthesizing the novel recognition criterion with the comparison of the histograms of query and model images. It is shown that a particular case of this criterion is the nearest neighbor rule with popular measures of similarity, namely, chi-square distance and Jensen-Shannon divergence. The results of experimental research in a problem of face recognition with widely used databases (AT&T, JAFFE) are presented. The proposed approach is demonstrated to achieve better recognition accuracy in comparison with conventional solution with reduction the recognition task to the statistical classification.
АВТОМАТИЧЕСКОЕ РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ЛИЦ, ВЕРОЯТНОСТНАЯ НЕЙРОННАЯ СЕТЬ, ПРОВЕРКА ОДНОРОДНОСТИ ВЫБОРОК, ПРАВИЛО БЛИЖАЙШЕГО СОСЕДА
АВТОМАТИЧЕСКОЕ РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ, РАСПОЗНАВАНИЕ ЛИЦ, ВЕРОЯТНОСТНАЯ НЕЙРОННАЯ СЕТЬ, ПРОВЕРКА ОДНОРОДНОСТИ ВЫБОРОК, ПРАВИЛО БЛИЖАЙШЕГО СОСЕДА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
