Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Физическая мезомехан...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Квантово-механическое описание адгезионных взаимодействий и экспериментальные исследования процессов агрегации углеродно-силикатных наночастиц — усиливающих наполнителей полимерных композитов

Квантово-механическое описание адгезионных взаимодействий и экспериментальные исследования процессов агрегации углеродно-силикатных наночастиц — усиливающих наполнителей полимерных композитов

Abstract

Наноразмерные частицы широко используются в качестве усиливающих полимерные композиты добавок — наполнителей. Понимание механизмов и закономерностей их взаимодействия, приводящих к объединению наночастиц в агрегаты, имеет большое значение для объяснения природы явления усиления полимерных композитов. В работе изучены адгезионные взаимодействия углеродных и силикатных адсорбционных комплексов (наномоделей частиц активных наполнителей полимерных композитов). Проведены квантово-механические расчеты и натурные экспериментальные исследования. Квантово-механический подход позволил описать адгезионные свойства агрегатов частиц, исходя из наноскопического строения их поверхности. Для проверки адекватности квантово-механических рекомендаций был проведен коллоидный размол микрочастиц природного, промышленно востребованного минерала шунгит, содержащего углеродные и силикатные компоненты, до наноразмеров в различных дисперсионных жидких средах (спирты, ацетон, вода). Изучены структура и свойства агрегатов микрои наночастиц шунгита, проведен фрактальный анализ их поверхности. Установлено, что меньшие по размеру агрегаты частиц силиката и углерода с большей фрактальной размерностью поверхности образуются при коллоидном размоле в присутствии дисперсионных сред с малыми размерами молекул (в данном случае этанола или метанола), что соответствует прогнозам квантово-механических вычислений.

Nanoparticles are widely used as polymer composite-reinforcing additives — fillers. Understanding the interaction mechanisms and regularities responsible for nanoparticle aggregation is of great significance for elucidating the nature of reinforcing of polymer composites. The paper reports on quantum mechanics calculations and full-scale experimental study of adhesive interaction of carbon and silicate adsorption complexes (nanomodels of active filler particles of polymer composites). The quantum mechanics approach allowed describing the adhesive properties of particle aggregates reasoning from nanoscopic structure of their surface. The quantum mechanics data were checked for adequacy on schungite — a natural mineral containing carbon and silicate. Schungite microparticles were milled to nanosizes by colloidal grinding in various disperse liquid media (alcohol, acetone, water) and the structure and properties of aggregated schungite microand nanoparticles were studied; fractal analysis of their surface was performed. It is found that smaller aggregates of silicate and carbon particles with higher surface fractal dimension are formed in colloidal grinding with small molecular sizes of disperse media (in our case, ethanol or methanol) and this agrees with the data predicted by quantum mechanics calculations.

Keywords

НАНОРАЗМЕРНЫЕ ЧАСТИЦЫ УГЛЕРОДА И СИЛИКАТА, АГРЕГАЦИЯ, КВАНТОВО-МЕХАНИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ШУНГИТ, КОЛЛОИДНОЕ ИЗМЕЛЬЧЕНИЕ, РАЗМЕР И СВОЙСТВА ПОВЕРХНОСТИ АГРЕГАТОВ, ФРАКТАЛЬНЫЙ АНАЛИЗ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold