
This paper considers the problem of optimal recovery of bounded analytic functions. Namely, the values of these functions are determined at the point from their values at n given points lying in the unit circle. At first, we recall the necessary basic concepts: error of approximation by some method (which is a complex function of n complex variables), the best approximation method. Some theorems from the works of K.U. Osipenko are discussed: on the existence of a best linear approximation method and on calculating the error of best recovery method. After that we write out the formula for finding the error of best approximation method of bounded analytic functions in a unit circle. The lemma of conformal invariance of optimal recovery problem of these functions follows. We prove that under conformal mapping of the unit circle onto itself the error of the best approximation method before mapping coincides with the error of the best approximation method after mapping. It is also proved that a linear best method after conformal mapping coincides with the linear best restore method before this mapping (wherein the problem of optimal recovery after mapping is considered on the images of n given points lying in the original unit circle). Finally, we consider the problem of optimal recovery of bounded analytic functions in a circle in special case when the given points coincide with the vertices of a regular n-gon, and the point itself coincides with its center (which coincides with the origin). We prove that all the coefficients of the best linear method in this case are identical (wherein we apply the lemma of conformal invariance of optimal recovery problem of bounded analytic functions). The formulas for calculating these coefficients are given (for this purpose we write out an integral). The result is the smart, simple formulas for calculating the coefficients of the best linear approximation method for this particular case.
Рассмотрена задача оптимального восстановления ограниченных аналитических функций, заданных в единичном круге. А именно, найдены значения этих функций в точке по информации об их значениях в конечном числе заданных точек. Напоминаются основные понятия и определения, а также некоторые теоремы из работы К.Ю. Осипенко. Разобран частный случай, когда заданные точки совпадают с вершинами правильного n-угольника, а сама точка с его центром. Выписаны коэффициенты линейного наилучшего метода. В заключении выражение для вычисления этих коэффициентов существенно упрощается.
ОПТИМАЛЬНОЕ ВОССТАНОВЛЕНИЕ,OPTIMAL RECOVERY,ПОГРЕШНОСТЬ НАИЛУЧШЕГО МЕТОДА,ERROR OF THE BEST METHOD,ЛИНЕЙНЫЙ НАИЛУЧШИЙ МЕТОД,BEST LINEAR METHOD,ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ,EXTREMAL FUNCTION,АНАЛИТИЧЕСКАЯ ФУНКЦИЯ,ANALYTICAL FUNCTION
ОПТИМАЛЬНОЕ ВОССТАНОВЛЕНИЕ,OPTIMAL RECOVERY,ПОГРЕШНОСТЬ НАИЛУЧШЕГО МЕТОДА,ERROR OF THE BEST METHOD,ЛИНЕЙНЫЙ НАИЛУЧШИЙ МЕТОД,BEST LINEAR METHOD,ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ,EXTREMAL FUNCTION,АНАЛИТИЧЕСКАЯ ФУНКЦИЯ,ANALYTICAL FUNCTION
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
