
В статье дается обзор вероятностного прогнозирования и обсуждается теоретический подход к оценке качества плотностных прогнозов, основанный на корректных скоринговых правилах и моментах. Данный подход опробован на условном примере прогнозирования в модели авторегрессии второго порядка, а также на примере прогнозирования фондового индекса РТС.
The article provides an overview of probabilistic forecasting and discusses a theoretical approach to assessing the quality of density forecasts, based on proper scoring rules and moments. An artificial example of predicting second-order autoregression and an example of predicting RTSI stock index are used to try out this approach.
ВЕРОЯТНОСТНЫЙ ПРОГНОЗ, КАЛИБРОВКА ПРОГНОЗА, ВЕРОЯТНОСТНОЕ ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, СКОРИНГОВОЕ ПРАВИЛО
ВЕРОЯТНОСТНЫЙ ПРОГНОЗ, КАЛИБРОВКА ПРОГНОЗА, ВЕРОЯТНОСТНОЕ ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, СКОРИНГОВОЕ ПРАВИЛО
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
