Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Современные наукоемк...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Нейросетевая реализация алгоритма коррекция ошибок в модулярном коде на основе коэффициентов обобщенной полиадической системы

Нейросетевая реализация алгоритма коррекция ошибок в модулярном коде на основе коэффициентов обобщенной полиадической системы

Abstract

Среди непозиционных кодов особое место занимают коды полиномиальной системы классов вычетов. Благодаря параллельной обработке данных модулярные коды позволяют обеспечить вычисления в реальном масштабе времени. Кроме того, при введении избыточных оснований модулярные коды могут обнаруживать и исправлять ошибки, которые возникают из-за отказа оборудования. В работе представлена нейросетевая реализация алгоритма вычисления коэффициентов обобщенной полиадической системы, позволяющая корректировать ошибки в модулярного коде.

Among nonpositional codes occupy a special place codes polynomial system of residue classes. Due to the parallel data processing modular codes allow for calculations in real time. In addition, the introduction of excess base modular codes can detect and correct errors that occur due to equipment failure. The paper presents a neural network implementation of the algorithm for calculating the coefficients of the generalized polyadic system, which allows correct errors in modular code.

Keywords

ПОЛИНОМИАЛЬНАЯ СИСТЕМА КЛАССОВ ВЫЧЕТОВ, КОЭФФИЦИЕНТОВ ОБОБЩЕННОЙ ПОЛИАДИЧЕСКОЙ СИСТЕМЫ, ОБНАРУЖЕНИЕ И КОРРЕКЦИЯ ОШИБОК, НЕЙРОННАЯ СЕТЬ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold