
Оцениваются вероятности времени первого пересечения постоянного и переменного уровней гауссовыми марковскими последовательностями конечного порядка с использованием геометрического и обобщенного геометрического распределений.
The probability of the time of first-crossing of constant and variable level by finite-order Gaussian Markov sequence is estimated using the geometrical and the generalized geometrical distributions.
ВЕРОЯТНОСТЬ ВРЕМЕНИ ПЕРВОГО ПЕРЕСЕЧЕНИЯ,ПОСТОЯННЫЙ И ПЕРЕМЕННЫЙ УРОВНИ,ГАУССОВА МАРКОВСКАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ,PROBABILITY OF FIRST-CROSSING TIME,FINITE-ORDER GAUSSIAN MARKOV SEQUENCE,CONSTANT AND VARIABLE LEVELS
ВЕРОЯТНОСТЬ ВРЕМЕНИ ПЕРВОГО ПЕРЕСЕЧЕНИЯ,ПОСТОЯННЫЙ И ПЕРЕМЕННЫЙ УРОВНИ,ГАУССОВА МАРКОВСКАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ,PROBABILITY OF FIRST-CROSSING TIME,FINITE-ORDER GAUSSIAN MARKOV SEQUENCE,CONSTANT AND VARIABLE LEVELS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
