Powered by OpenAIRE graph
Found an issue? Give us feedback

О непараметрическом моделировании динамических процессов

О непараметрическом моделировании динамических процессов

Abstract

The problem of non-parametric modeling of linear dynamic processes is discussed. Discrete form of the Duhamel integral for zero initial conditions is used as the model: t / At *s (t) =Z hs (t -Ti )u (Ti )At, i=1 where h s(t) is the assessment of the weight function, u(t) input action, Дт time-step discretization, xi = г'Дт the value of time discretization. As an estimate of the weight function is used nonparametric regression estimator. By definition: the weighting function is a reaction to the system input action in the S-function form. In this paper, as an approximation of S-function system is used: H,t e [0, AT + At]; u(t) = { w (0,t g [0, AT + At]. Input effect can be given through the width of the interval ог through height of level. These methods have different input 5 Д parameters, in the first case, the width of the interval is given and height of level is defined, in the second case, the height of level is fixed and the width of the interval is defined. The accuracy of the weighting function depends on these parameters, so when the input effect is defined with the width of the interval, weight function is closer to the true value than the other way. If the estimate of the weight function is used in the simulation, which is as close to the true value, then the model is effective in determining the system response to arbitrary input action. This method is applicable for modeling linear dynamic systems, without reference to the order of equation of the describing system.

Рассматривается задача идентификации линейной динамической системы (ЛДС) на основе интеграла свертки с использованием оценки весовой функции. Весовая функция при этом получена в результате реакции ЛДС на входное возмущающее воздействие в виде кусочно-постоянной аппроксимации 5-функции. Приводятся результаты численного моделирования непараметрических алгоритмов.

Keywords

ДИСКРЕТНО-НЕПРЕРЫВНЫЕ ДИНАМИЧЕСКИЕ ПРОЦЕССЫ, ВЕСОВАЯ ФУНКЦИЯ, НЕПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ, ИНТЕГРАЛ ДЮАМЕЛЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold