Powered by OpenAIRE graph
Found an issue? Give us feedback

СОВРЕМЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕВЫПУКЛЫХ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

СОВРЕМЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕВЫПУКЛЫХ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Abstract

The paper presents a few remarks on the evolution of Irkutsks school of O. V. Vasiliev on optimal control methods based on Pontryagin principle. Besides, one reviews some features of Pontryagin principle, in particular, its sufficiency and constructive property for linear (on the state) control systems and convex cost functionals. Further, some historical notes on the development of optimal control methods based on Pontryagin principle are considered. In particular, a separated attention has been paid to the impact of Irkutsk school of O. V. Vasiliev in the theory and method of optimal control, and the achievements of the former postgraduate student of O. V. Vasiliev professor V. A. Srochko. The mathematical presentation is concentrated on the story of the invention and investigations of the convergence and substantiation of the consecutive approximates method based on Pontryagin principle. In addition, one considers new Global Optimality Conditions in a general nonconvex optimal control problem with Bolza goal functionals. Moreover, together with the necessity proof of global optimality conditions we investigate its relations to Pontryagin principle. Besides, the constructive (algorithmic) property of new optimality conditions is also demonstrated, and an example of nonconvex optimal control problems has been solved by means of global optimality conditions. In this example, we performed an improvement of a feasible control satisfying Pontryagin principle with a corresponding improvement of the cost functional. Finally, employing Pontryagin principle and new Global Optimality Conditions we give a demonstration of construction of a optimal control method and provide for new result on its convergence.

Работа представляет некоторые заметки по эволюции иркутской школы О.В. Васильева по методам оптимального управления, основанным на принципе максимума (минимума) Л. С. Понтрягина. При этом исследуются некоторые особенности самого принципа Понтрягина, в частности, его достаточность и конструктивное свойство для линейных систем управления и выпуклых (по состоянию) функционалов. Приведены исторические замечания по разработке методов оптимального управления, базирующихся на принципе Понтрягина. При этом особое внимание уделено вкладу иркутской школы О. В. Васильева по теории и методам оптимального управления, а также вкладу любимого ученика О. В. Васильева профессора В. А. Срочко. Математическая презентация сконцентрирована на истории создания и исследованиям по сходимости и обоснованию метода последовательных приближений, основанного на принципе Понтрягина. Далее рассматриваются новые условия глобальной оптимальности в общей невыпуклой задаче оптимального управления с целевым функционалом Больца. При этом наряду с доказательством необходимости условий глобальной оптимальности исследуются их взаимосвязи с принципом Понтрягина. Устанавливается также конструктивное (алгоритмическое) свойство новых условий глобальной оптимальности. Кроме того, приводится пример решения невыпуклой задачи оптимального управления посредством условий глобальной оптимальности, когда происходит улучшение управления, удовлетворяющего принципу Понтрягина, с непременным улучшением значения целевого функционала. В заключение демонстрируется также возможность построения численных методов, использующих принцип Понтрягина и новые условия глобальной оптимальности, и приводятся результаты по сходимости.

Keywords

ПРИНЦИП ПОНТРЯГИНА,PONTRYAGIN PRINCIPLE,МЕТОДЫ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ,OPTIMAL CONTROL METHODS,УСЛОВИЯ ГЛОБАЛЬНОЙ ОПТИМАЛЬНОСТИ,GLOBAL OPTIMALITY CONDITIONS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold