
Introduction. Trends of increase of ACS and AIS and their use in everyday life are dis-cussed. The need a voice mode of human interaction with AIS is mentioned. Noticed that net-work integration of AIS allows to combine their resources and contributes to progress in speech recognition. The emergence of smart phones and their widespread use is the desire to use them as personal voice terminals for access to distributed information networks. Main part. Possibility of use of Android-based personal portable mobile devices (PPMD) like terminals and like autonomous units, as well as possibility of use of Windows-based sta-tionary PC like servers of distributed data-processing system (DDPS) with voice control are considered. Criteria for selection of PPMD and OS of client terminals, as well as require-ments DDPS and its structure are formulated. Concept of building of DDPS by "client serv-er" and "a lot of clients — many servers" technologies are submitted. Concept of a PPMD virtual interface and server virtual interface are offered. Communication between threads within the process of the PPMD virtual interface of client terminal and the interaction be-tween the processes of the client and server in the autonomous mode, as well as in the DDPS mode are considered. The results of experimental tests of the prototype of DDPS when ex-changing data between Windows and Android clients, and Windows Server are running; the accuracy and reliability of embedded solutions and scalability of DDPS are confirmed. Conclusions. Modern PPMD on Android OS with can be used as terminal devices for construction on the basis of their different specialized voice control DDPS with technology "client server" and "a lot of customers many servers". Unification APIs of PPMD with dif-ferent OS can be done by implementing a virtual PPMD interface. Exchanging data between processes of DDPS better sell through technology Berkeley sockets, which are supported by most modern operating systems. Exchanging data between threads of individual processes better implement with technology of system messages. Application of these approaches allow to create a scalable DDPS with the number of concurrent clients 100 or more with server by PC with Intel Core i3 CPU and OS Windows XP.
Рассмотре-ны возможности использования персональных портативных мобильных устройств (ППМУ) на базе ОС Android в качестве терминалов и автономных узлов, а также стационарных ПК на базе ОС Windows в качестве серверов распределенной информа-ционно-вычислительной системы (РИВС) с голосовым управлением. Сформулированы критерии выбора ППМУ и ОС для клиентских терминалов, а также требования к РИВС и ее структура. Представлено концепции построения РИВС по технологии «клиент — сервер» и «много клиентов — много серверов». Предложено концепцию виртуального интерфейса ППМУ и виртуального интерфейса сервера. Рассмотрены взаимодействие между потоками в рамках процесса виртуального интерфейса ППМУ клиентского терминала и взаимодействие между процессами клиентской и серверной частей, как в автономном варианте, так в рамках РИВС.
інформаційно-обчислювальна система, розподілені обчислення, голосове управління, операційна система Android, технологія клієнт — сервер, информационно-вычислительная система, распределенные вы-числения, голосовое управление, операционная система Android, технология клиент — сервер, client — server technology
інформаційно-обчислювальна система, розподілені обчислення, голосове управління, операційна система Android, технологія клієнт — сервер, информационно-вычислительная система, распределенные вы-числения, голосовое управление, операционная система Android, технология клиент — сервер, client — server technology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
