Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ufimskii Matematiche...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Задача Коши для уравнений Навье-Стокса, метод Фурье

Задача Коши для уравнений Навье-Стокса, метод Фурье

Abstract

Изучается задача Коши для системы уравнений Навье-Стокса в трехмерном пространстве с периодическими условиями по пространственным переменным. Заданные и искомые вектор-функции раскладываются в ряды Фурье по собственным функциям оператора ротор. Задача сводится к задаче Коши для системы обыкновенных дифференциальных уравнений. В рассматриваемом базисе она имеет простой вид. Составлены программы реконструкции систем Галеркина и численного решения задачи Коши. Рассчитаны некоторые модельные задачи. Результаты оформлены в виде графиков, дающих представление о движении потока жидкости. Исследована задача Коши для линейной однородной системы Стокса в шкале пространств Гильберта. Доказано, что оператор задачи реализует изоморфизм этих пространств. В общем случае, выписаны семейства явных глобальных решений нелинейной задачи Коши. Кроме того, указаны два пространства Гильберта, в каждом из которых последовательность аппроксимаций Галеркина ограничена.

The Cauchy problem for the 3D Navier-Stokes equations with periodical conditions on the spatial variables is investigated. The vector functions under consideration are decomposed in Fourier series with respect to eigenfunctions of the curl operator. The problem is reduced to the Cauchy problem for Galerkin systems of ordinary differential equations with a simple structure. The program of reconstruction for these systems and numerical solutions of the Cauchy problems are realized. Several model problems are solved. The results are represented in a graphic form which illustrates the flows of the liquid. The linear homogeneous Cauchy problem is investigated in Gilbert spaces. Operator of this problem realizes isomorphism of these spaces. For a general case, some families of exact global solutions of the nonlinear Cauchy problem are found. Moreover, two Gilbert spaces with limited sequences of Galerkin approximations are written out.

Keywords

ряды фурье, собственные функции оператора ротор, уравнения навье-стокса, задача коши, глобальные решения, системы галеркина, пространства гильберта

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold