Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Onkourologiâarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Роль мультипараметрической МРТ в выявлении и локализации раннего рака предстательной железы

Роль мультипараметрической МРТ в выявлении и локализации раннего рака предстательной железы

Abstract

Проведена оценка эффективности диагностики рака предстательной железы (РПЖ) с применением метода мультипараметрической магнитно-резонансной томографии. В отличие от большинства работ по схожей тематике в данном исследовании дается объективная оценка с использованием метода статистического анализа бинарной логистической регрессии. Использовались данные о 166 пациентах, в том числе первичные (с подозрением на РПЖ), с установленным диагнозом РПЖ, с отрицательной биопсией в анамнезе и с подозрением на рецидив РПЖ. Части пациентов была выполнена прицельная биопсия, результаты которой затем использовались в статистической обработке. Данные анализа чувствительности, специфичности и общей точности метода по созданной модели бинарной логистической регрессии при разделительном значении равном 0,625 составили 75,0; 85,2 и 79,7 % соответственно. Также была оценена эффективность диффузионно взвешенных изображений (ДВИ) с различной степенью взвешенности по диффузии молекул воды (b-фактор) на магнитно-резонансных (МР) томографах с различной индукцией магнитного поля (1,5 и 3 Тл). Статистически достоверных различий в нормированной абсолютной интенсивности сигнала (относительно контралатерального участка железы) на ДВИ с фактором b = 1000 и b = 2000 между МРтомографами с индукцией магнитного поля 1,5 и 3,0 Тл не выявлено.

The efficiency of prostate cancer (PC) diagnosis using multipatametric magnetic resonance imaging (MRI) was evaluated. Unlike most of investigations of the similar problem, this trial provides an objective assessment applying the method of statistical analysis binary logistic regression. It used data on 166 patients, including primary patients (with suspected PC), as well as patients with the established diagnosis of PC, those with a history of negative biopsy, and those with suspected recurrent PC. Some patients underwent target biopsy, the results of which were then employed for statistical processing. The data of the analysis showed that the sensitivity, specificity, and total accuracy of the method using the created model of binary logistic regression at the separation value of 0.625 were 75.0, 85.2, and 79.7%, respectively. The efficiency of diffusion-weighted images (DWI) with varying weighing degree by water molecule diffusion (b factor) on MRI systems with different magnetic field strength (1.5 and 3 Tesla) was also evaluated. There were no statistically significant differences in normalized absolute signal intensity as to the contralateral gland portion) in DWI with b factors of 1000 and 2000 between the MRI systems with a magnetic field strength of 1.5 and 3.0 Tesla.

Keywords

РАК ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ, РЕЦИДИВ, МУЛЬТИПАРАМЕТРИЧЕСКАЯ МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ, ДИФФУЗИОННО ВЗВЕШЕННОЕ ИЗОБРАЖЕНИЕ, ДИНАМИЧЕСКОЕ КОНТРАСТИРОВАНИЕ, БИНАРНАЯ ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Cancer Research