Powered by OpenAIRE graph
Found an issue? Give us feedback

Исследование временных рядов с применением методов фрактального и вейвлет анализа

Исследование временных рядов с применением методов фрактального и вейвлет анализа

Abstract

This paper is concerned with the mathematical and numerical modeling of the time series by using wavelet and fractal analysis. The basic algorithm is based on the condition of existence of the time series. It consists in the measurement of randomness and analysis of the particular state of the system by using the wavelet transformation. This complex application allows you to get more information for the process under study, which describes the time series. The analysis of the wavelet coefficients allows us to identify the nonstationarity of the investigated process on any frequency-temporal scales and thus is both qualitative and quantitative characteristic of nonstationarity. The analysis of fractal dimensions provides a quantitative assessment of the random nature of the process under investigation. The proposed algorithm allows to build forecasts of distinguishing factors (indicators), which causes the poor state of the considered process. The main result is the mathematical model number for generation from statistical processes to chaotic which in the using of experimental data allows to take into account real conditions of the analysis of transient processes from various subject areas including social processes (injuries, disease and so on). The proposed approach is seen as one of alternative to existing methods for estimate and control processes.

Рассматривается математическое и численное моделирование временных рядов с помощью вейвлет и фрактального анализа. Основной алгоритм обработки строится при условии существования временного ряда и заключается в определении показателей хаотичности и анализе особых состояний системы с помощью вейвлет преобразования. Данное комплексное применение дает более полную информацию об исследуемом процессе, описанном временными рядами. Анализ вейвлеткоэффициентов позволяет выявить нестационарности исследуемого процесса на любых частотно-временных масштабах, и тем самым получить как качественные, так и количественные характеристики нестационарности. Анализ фрактальных размерностей предоставляет количественную оценку хаотичности исследуемого процесса. Предложенный алгоритм позволяет строить оценки с выделением факторов (показателей), предопределяющих неудовлетворительное состояние рассматриваемого процесса. Основным результатом является математическая модель ряда для генерации от статистических процессов до хаотических, которая при использовании экспериментальных данных учитывает реальные условия анализа временных процессов из различных предметных областей, в том числе социальных процессов (травматизма, заболеваемости и т.д.). Предложенный подход приведен как один из альтернативных из существующих методов оценки и управления процессами.

Keywords

МАТЕМАТИЧЕСКОЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ, ВРЕМЕННОЙ РЯД, ВЕЙВЛЕТ АНАЛИЗ, ФРАКТАЛЬНЫЙ АНАЛИЗ, ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ, ПОКАЗАТЕЛЬ ХЕРСТА, ПЕРСИСТЕНТНОСТЬ, АНТИПЕРСИСТЕНТНОСТЬ, ВЕЙВЛЕТ СПЕКТРЫ, АЛГОРИТМ, ANTIPERSISTENСЕ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold