
Рассмотрены способы получения рекуррентных соотношений аддитивных последовательностей периодических функций. Предложен перспективный алгоритм формирования рекуррентных соотношений для восстановления аддитивных последовательностей периодических функций, а также последовательностей более сложного класса периодических функций.The paper considers methods for derivation of the recurrent relations of additive sequences for periodic functions. The promising algorithm of derivation of recurrence relations for recovery of additive sequences of periodic functions, as well as for more complex sequences of a class of periodic functions is proposed.
ВРЕМЕННОЙ РЯД, ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ, РЕКУРРЕНТНОЕ СООТНОШЕНИЕ, Z-ПРЕОБРАЗОВАНИЕ
ВРЕМЕННОЙ РЯД, ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ, РЕКУРРЕНТНОЕ СООТНОШЕНИЕ, Z-ПРЕОБРАЗОВАНИЕ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
