Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ufimskii Matematiche...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

О 2-порожденности слабо локализуемых подмодулей в модуле целых функций экспоненциального типа и полиномиального роста на вещественной оси

О 2-порожденности слабо локализуемых подмодулей в модуле целых функций экспоненциального типа и полиномиального роста на вещественной оси

Abstract

В работе рассматривается топологический модуль целых функций P(a;b) изоморфный образ при преобразовании Фурье-Лапласа пространства Шварца распределений с компактными носителями в конечном или бесконечном интервале (a;b) ⊂ ℝ. Доказывается, что каждый слабо локализуемый подмодуль в P(a;b) либо порожден двумя своими элементами, либо равен замыканию суммы двух подмодулей специального вида. Также приводятся двойственные результаты об инвариантных относительно оператора дифференцирования подпространствах пространства C∞(a;b).

In the work we consider a topological module P(a; b) of entire functions, which is the isomorphic image of the Schwarz space of distributions with compact supports in a finite or infinite interval (a; b) ⊂ ℝ under the Fourier-Laplace transform. We prove that each weakly localizable module in P(a; b) is either generated by its two elements or is equal to the closure of two submodules of special form. We also provide dual results on subspaces in C∞(a; b) invariant w.r.t. the differentiation operator.

Keywords

ЦЕЛЫЕ ФУНКЦИИ,СУБГАРМОНИЧЕСКИЕ ФУНКЦИИ,ПРЕОБРАЗОВАНИЕ ФУРЬЕ-ЛАПЛАСА,КОНЕЧНО ПОРОЖДЕННЫЕ ПОДМОДУЛИ,ЛОКАЛЬНОЕ ОПИСАНИЕ ПОДМОДУЛЕЙ,ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА,СПЕКТРАЛЬНЫЙ СИНТЕЗ,ENTIRE FUNCTIONS,SUBHARMONIC FUNCTIONS,FOURIER-LAPLACE TRANSFORM,FINITELY GENERATED SUBMODULES,DESCRIPTION OF SUBMODULES,LOCAL DESCRIPTION OF SUBMODULES,INVARIANT SUBSPACES,SPECTRAL SYNTHESIS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold