Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Иркутского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Правильные системы дифференциально-алгебраических уравнений

Правильные системы дифференциально-алгебраических уравнений

Abstract

We consider linear and nonlinear systems of differential-algebraic equations. The conditions of reducibility and regularity of linear systems are obtained. The theorems connecting these notions are proved. The theorem about stability of nonlinear systems in the first approximation is proved under the conditions of existence of some global structural form. An arbitrary high unsolvability index and variable ranks of Jacobi matrices describing a system are allowed

Рассматриваются линейные и нелинейные системы дифференциально-алгебраических уравнений. Для линейных систем получены условия приводимости и правильности, доказаны теоремы, связывающие эти понятия. Для нелинейной системы в условиях существования глобальной структурной формы доказана теорема об устойчивости по первому приближению. Допускаются произвольно высокий индекс неразрешенности и переменные ранги матриц Якоби, описывающих систему

Keywords

ДИФФЕРЕНЦИАЛЬНО-АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ, ПРИВОДИМОСТЬ, ПРАВИЛЬНОСТЬ, УСТОЙЧИВОСТЬ ПО ЛИНЕЙНОМУ ПРИБЛИЖЕНИЮ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold