
Класс рациональных множеств моноида M определяется как замыкание конечных подмножеств M относительно операций объединения, произведения и порождения подмоноида. Предлагается способ вычисления асимптотической плотности произвольного рационального множества в группе Z n с использованием свойств рациональных множеств в коммутативных моноидах.
The class of rational subsets of a monoid M is defined as the closure of its finite subsets under union, product and monoid closure. The author introduces the method to calculate asymptotic density for arbitrary rational set in Z n using the properties of rational sets in commutative monoids.
РАЦИОНАЛЬНОЕ МНОЖЕСТВО, АСИМПТОТИЧЕСКАЯ ПЛОТНОСТЬ, МНОГОГРАННИК РЕШЕТКИ, ПОЛИНОМ ЭРХАРТА
РАЦИОНАЛЬНОЕ МНОЖЕСТВО, АСИМПТОТИЧЕСКАЯ ПЛОТНОСТЬ, МНОГОГРАННИК РЕШЕТКИ, ПОЛИНОМ ЭРХАРТА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
