Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ЭКСПЕРТНЫЕ СИСТЕМЫ ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ С ПРИМЕНЕНИЕМ МЕТОДОВ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

ЭКСПЕРТНЫЕ СИСТЕМЫ ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ С ПРИМЕНЕНИЕМ МЕТОДОВ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

Abstract

The methods of fuzzy set theory offers an approach to the creation of an expert system for medical diagnosis based on the fuzzy initial information and assessments. The main problems in creating an expert system for medical diagnosis related to performance, usage and acquisition of knowledge, and propose methods to solve them on the basis of methods of the theory of fuzzy sets and fuzzy logic. Created structure of the proposed expert system questioning patients and preliminary diagnosis describes its functional units: the control unit screen; The image control unit; unit database management and knowledge; block dialogue with the questioning; unit aid in the acquisition of knowledge; Block explaining the conclusions of the process. A block diagram of an evaluation process in the system of questioning and preliminary diagnosis. For a description and the formalization of the relationship of the disease and symptoms is used matrices of fuzzy relations. The description of the diagnostic algorithm, using the linguistic truth values. To solve the problems of expert procedures in fuzzy environment, we propose an effective method for organizing and conducting peer review, taking into account the peculiarities of human assessment procedures, doctors knowledge and methodology of fuzzy set theory. Thus, we propose an approach to the creation of an expert system, which can contribute to early detection and treatment of diseases due to the active diagnosis of the system. In order to ensure and improve the accuracy of the conclusions in the proposed expert system is introduced a model based on fuzzy match as a broader concept.

На основе методов теории нечетких множеств предлагается подход к созданию экспертной системы для медицинской диагностики с учетом нечеткости исходной информации и оценок. Выделены основные проблемы при создании экспертной системы для медицинской диагностики связанные с представлением, использованием и приобретением знаний, и предложены методы их решения на основе методов теории нечетких множеств и нечеткой логики. Создана структура предлагаемой экспертной системы расспроса больных и предварительной диагностики описаны ее функциональные блоки: блок управления экраном; блок управления изображением; блок управления базами данных и знаний; блок ведения диалога при расспросе; блок помощи в приобретении знаний; блок объяснения процесса выводов. Разработана блок-схема процедуры оценки в системе расспроса и предварительной диагностики. Для описания и формализации взаимосвязи болезни и симптомов используется матрицы нечетких отношений. Дано описание алгоритма диагностики, использующего лингвистические значения истинности. Для решения проблем проведения экспертных процедур в нечеткой среде предложен эффективный метод организации и проведения экспертной оценки, учитывающий особенности человеческой процедуры оценки, знания врачей и методологию теории нечетких множеств. Таким образом, предлагается подход к созданию экспертной системы, которая может способствовать раннему обнаружению и лечению болезней благодаря активной постановке диагноза самой системой. Для обеспечения и повышения точности выводов в предлагаемой экспертной системе вводится модель, основанная на нечетком соответствии как более широком понятии.

Keywords

ЭКСПЕРТНАЯ СИСТЕМА,МЕДИЦИНСКАЯ ДИАГНОСТИКА,СИМПТОМЫ,ФУНКЦИЯ ПРИНАДЛЕЖНОСТИ,МЕТОДЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ,EXPERT SYSTEM,DIAGNOSIS,SYMPTOMS,MEMBERSHIP FUNCTION,METHODS OF FUZZY SET THEORY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities