
This paper investigates the effect of a small attached mass on the frequency and form of flexural vibrations of an infinitely long circular cylindrical shell-ring, under plane deformation conditions. The equations of motion for transverse vibrations are used as a mathematical model. These equations are obtained from analogous equations of the Donnell-Mushtari-Vlasov theory of shallow shells. A new approach to the construction of a mathematical model is proposed by the author. This approach suggests that the attached mass in the linear formulation leads to the interaction between the conjugate and the radial flexural forms of vibrations. The new system of dynamic equations obtained by the Bubnov-Galerkin method suggests that such additional inclusions lead to the connectedness and interaction of low-frequency flexural vibrations of the shell with high-frequency radial vibrations. In this case the radial vibrations act as an additional inertial connection between the conjugate flexural forms. It is shown that the radial vibrations are inconspicuous. However, by taking them into account, it is possible to arrive at a qualitative conclusion about the impact of the wave formation parameter on the smaller of the split eigenfrequencies. This parameter depends on the relative thickness of the ring. This means that the effect of reducing the smaller of the split eigenfrequencies of predominantly flexural vibrations depends not only on the attached mass, as it is assumed at the moment, but also on the geometric and wave parameters of the shell. It is established that at certain values of the wave formation parameter, the frequencies and amplitudes of predominantly radial vibrations can be commensurate with the frequencies and amplitudes of predominantly flexural vibrations. This means that when the shell is subjected to dynamic impact, the resonance effect may occur not only at frequencies of the flexural vibrations, as follows from the known analytical solutions, but also at frequencies corresponding to the radial vibrations. The results and conclusions obtained are in qualitative agreement with the available experimental data and numerical calculations. These results can be generalized to the case of vibrations of thin circular cylindrical shells of finite length that carry attached mass.
Изучено влияние малой присоединенной массы на частоты и формы изгибных колебаний бесконечно длинной круговой цилиндрической оболочки кольца, находящегося в условиях плоской деформации. В качестве математической модели использованы уравнения движения поперечных колебаний, полученные из аналогичных уравнений теории пологих оболочек Донелла-Муштари-Власова. Предложен новый подход к построению математической модели, предполагающий, что присоединенная масса уже в линейной постановке приводит к взаимодействию сопряженных изгибных форм колебаний с радиальными. Полученная методом Бубнова-Галеркина новая система динамических уравнений свидетельствует о том, что дополнительные включения такого рода приводят к связанности и взаимодействию низкочастотных изгибных колебаний оболочки с высокочастотными радиальными колебаниями, при этом радиальные колебания выступают в качестве дополнительной инерционной связи между сопряженными изгибными формами. Показано, что радиальные колебания малозаметны, однако именно их учет позволяет сделать вывод о влиянии параметра волнообразования, зависящего от относительной толщины кольца, на меньшую из расщепленных собственных частот. Таким образом, эффект снижения меньшей из расщепленных собственных частот преимущественно изгибных колебаний зависит не только от величины присоединенной массы, как принято считать в настоящее время, но и от геометрических и волновых параметров оболочки. Обнаружено, что при определенных значениях параметра волнообразования частоты и амплитуды преимущественно как радиальных, так и изгибных колебаний могут быть соизмеримы. Это означает, что при динамическом воздействии на оболочку эффект резонанса может возникать не только на частотах изгибных форм колебаний, но и на близких к ним частотах, соответствующих радиальным формам колебаний. Полученные результаты и выводы качественно согласуются с известными экспериментальными данными и численными расчетами и могут быть обобщены для случая колебаний тонких круговых цилиндрических оболочек конечной длины, несущих присоединенную массу.
ТОНКАЯ КРУГОВАЯ ЦИЛИНДРИЧЕСКАЯ ОБОЛОЧКА,ИЗОЛИРОВАННОЕ КОЛЬЦО,ПРИСОЕДИНЕННАЯ МАССА,ДИНАМИЧЕСКАЯ АСИММЕТРИЯ,ИЗГИБНЫЕ И РАДИАЛЬНЫЕ КОЛЕБАНИЯ,СОБСТВЕННЫЕ ЧАСТОТЫ И ФОРМЫ КОЛЕБАНИЙ ОБОЛОЧЕК,РАСЩЕПЛЕНИЕ ИЗГИБНОГО ЧАСТОТНОГО СПЕКТРА,THIN INFINITELY LONG SHELL,ISOLATED RING,ATTACHED MASS,DYNAMIC ASYMMETRY,FLEXURAL AND RADIAL VIBRATIONS,NATURAL FREQUENCIES AND FORMS,SPLITTING THE SPECTRUM
ТОНКАЯ КРУГОВАЯ ЦИЛИНДРИЧЕСКАЯ ОБОЛОЧКА,ИЗОЛИРОВАННОЕ КОЛЬЦО,ПРИСОЕДИНЕННАЯ МАССА,ДИНАМИЧЕСКАЯ АСИММЕТРИЯ,ИЗГИБНЫЕ И РАДИАЛЬНЫЕ КОЛЕБАНИЯ,СОБСТВЕННЫЕ ЧАСТОТЫ И ФОРМЫ КОЛЕБАНИЙ ОБОЛОЧЕК,РАСЩЕПЛЕНИЕ ИЗГИБНОГО ЧАСТОТНОГО СПЕКТРА,THIN INFINITELY LONG SHELL,ISOLATED RING,ATTACHED MASS,DYNAMIC ASYMMETRY,FLEXURAL AND RADIAL VIBRATIONS,NATURAL FREQUENCIES AND FORMS,SPLITTING THE SPECTRUM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
