Powered by OpenAIRE graph
Found an issue? Give us feedback

Определение вероятностных моментов фазовых координат нелинейной модели конструкции

Определение вероятностных моментов фазовых координат нелинейной модели конструкции

Abstract

The problem of stochastic dynamics of a nonlinear finite element model is considered in this article using the expansion of the solution in the truncated orthogonal basis of eigenvectors of the statistically linearized system. It is assumed that the nonlinearity present in the system does not lead to a considerable change in the system’s dynamic behavior. It only makes a significant quantitative amendment to the probabilistic characteristics in relation to the linear model. In order for the latter to maintain its physical meaning, all nonlinear characteristics are represented as the sum of the linear and nonlinear components. The additive external action is taken as stationary or quasi-stationary. The system of equations relative to the main coordinates written in the Cauchy form is brought to the canonic form using the generating filters. The well-known differential equations of the method of moments are used to solve the problem within the correlation theory framework, providing that the relationship between the eigenvalues and eigenvectors, and the unknown stochastic moments, through which the coefficients of statistical linearization are expressed, is known. To reveal this relationship, the expansions of eigenvalues and eigenvectors to power series with respect to coefficients of statistical linearization are used. These expansions are considered as variations of the elements of the stiffness matrix of the linear model. The linear or quadratic approximation is taken into account. The stochastic moments that constitute the coefficients of statistical linearization are calculated through an iterative procedure. Practice shows that this procedure converges in two or three approximations. The results are illustrated by an example.

Рассмотрена задача стохастической динамики нелинейной конечно-элементной модели с использованием разложения решения по усеченному ортогональному базису собственных векторов статистически линеаризованной системы. Принято допущение, что нелинейности, присутствующие в системе, не приводят к принципиальному изменению ее динамического поведения, а только вносят существенную количественную поправку в вероятностные характеристики по отношению к линейной модели. Для того чтобы последняя не потеряла физический смысл, все нелинейные характеристики представлены в виде суммы линейной и нелинейной составляющих. Аддитивное внешнее воздействие принято стационарным или квазистационарным. Система уравнений относительно главных координат, записанная в форме Коши, приведена к каноническому виду с применением формирующих фильтров. Использованы известные дифференциальные уравнения метода моментов, позволяющие решить задачу в рамках корреляционной теории, если известна зависимость собственных чисел и векторов от искомых вероятностных моментов, через которые выражаются коэффициенты статистической линеаризации. Для выявления этой зависимости использованы разложения собственных чисел и векторов в степенные ряды по коэффициентам статистической линеаризации, рассматриваемые как вариации элементов матрицы жесткости линейной модели. Учтено линейное или квадратическое приближение. Расчет вероятностных моментов, входящих в коэффициенты статистической линеаризации, проводится посредством итерационной процедуры, которая, как показала практика, сходится за два или три приближения. Результаты проиллюстрированы примером.

Keywords

МОМЕНТНЫЕ ХАРАКТЕРИСТИКИ,ОРТОГОНАЛЬНЫЙ БАЗИС,КАНОНИЧЕСКАЯ ФОРМА УРАВНЕНИЙ,МЕТОД МОМЕНТОВ,ИТЕРАЦИОННАЯ ПРОЦЕДУРА,НОРМАЛЬНАЯ ФОРМА КОШИ,MOMENT CHARACTERISTICS,ORTHOGONAL BASIS,CANONICAL FORM OF EQUATIONS,METHOD OF MOMENTS,ITERATIVE PROCEDURE,NORMAL CAUCHY FORM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze