Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik Samarskogo G...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Об одном свойстве свободных компонентов, относящихся к суммам одинаковых степеней

Об одном свойстве свободных компонентов, относящихся к суммам одинаковых степеней

Abstract

Статья содержит доказательство того, что число комбинаторных размещений совпадает со свободными компонентами сумм взвешенных одинаковых степеней с натуральными основаниями и показателями при наличии простого равенства, связывающего элементы этих размещений. В доказательстве используется модифицированное описание компонентов, участвующих в образовании суммы взвешенных одинаковых степеней. Это описание упрощается и приводится к виду произведения биномиальных коэффициентов. Других вариантов построения соответствующего произведения биномиальных коэффициентов здесь не существует. Полученное доказательство позволяет как представлять число размещений в виде произведения, так и применять при этом представлении элементы суммирования. Таким образом, число размещений допускает собственное выражение не только в виде произведения его элементов.

The given paper contains the proof of that the number of combinatorial arrangements coincides with free components of the sums of equal powers with the natural bases and parameters in the presence of the simple equality connecting elements of these arrangements. In the proof the modified exposition of the components participating in formation of the sum of equal powers is used. This exposition becomes simpler and led to an aspect of product of binomial factors. Other variants of construction of corresponding product of binomial factors do not exist here. The received proof allows both to represent number of arrangements in the form of product, and to apply at this representation summation elements. Thus, the number of arrangements supposes characteristic expression not only in the form of product of its elements.

Keywords

СУММА ОДИНАКОВЫХ СТЕПЕНЕЙ,SUM OF EQUAL POWERS,СВОБОДНЫЕ КОМПОНЕНТЫ,FREE COMPONENTS,ЧИСЛО РАЗМЕЩЕНИЙ,NUMBER OF ARRANGEMENTS,БИНОМИАЛЬНЫЕ КОЭФФИЦИЕНТЫ,BINOMIAL FACTORS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold