
При предположениях классической теории Кирхгофа рассматривается задача об установившихся колебаниях тонкой прямоугольной пластинки из упругого ортотропного материала. Двумерная краевая задача сводится к одномерной модифицированным методом сплайн-коллокации.Одномерная задача решается численно устойчивым методом дискретной ортогонализации. Приведены результаты вычислений первых трех резонансных частот и графики, изображающиеформу деформированной срединной поверхности, для трех вариантов условий на контуре.
The problem of the steady transverse vibrations of a rectangular orthotropic plate under the classical Kirchhoff theory assumptions is considered. Two-dimensional problemis reduced to one-dimensional via themodified spline-collocationmethod.One-dimensional problem is numerically solved with the stable discrete orthogonalization method. Numerical results for three resonance frequencies and plots for deformed middle-surface are presented for three types of boundary conditions on the edges.
МЕТОД СПЛАЙН-КОЛЛОКАЦИИ, ОРТОТРОПНАЯ ПЛАСТИНКА
МЕТОД СПЛАЙН-КОЛЛОКАЦИИ, ОРТОТРОПНАЯ ПЛАСТИНКА
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
