Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik of Saint Pet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Туннелирование частицы через двойной дельтаобразный барьер с зависящим от времени потенциалом

Туннелирование частицы через двойной дельтаобразный барьер с зависящим от времени потенциалом

Abstract

The article considers transmission of a particle through the system of two δ-function barriers, the first of which having an oscillating component of the amplitude of the δ-function. In the framework of Floquet theory an infinite system of coupled equations for amplitudes of modes of one-dimensional Schr¨odinger equation is obtained. A formula for probability of transmission of the particle through the double potential barrier is derived. An algorithm for numeric computation of probability of transmission is described. Numeric examples for the case of low-frequency oscillating component of the potential are provided as illustrations. The theory developed can be applied to perform computations within realistic models of systems of potential barriers in different semiconductor structures, including quantum wells and superlattices.

Рассмотрено прохождение частицы через систему двух дельтаобразных потенциальных барьеров, первый из которых имеет гармонически осциллирующую добавку к мощности дельта-функции. В рамках теории Флоке получена бесконечная система связанных уравнений на амплитуды мод одномерного уравнения Шрёдингера. Выведена формула для вероятности прохождения частицы через двойной потенциальный барьер. Описан алгоритмчисленного расчёта вероятности прохождения. Изложение проиллюстрировано численными примерами в случае низкочастотной добавки к потенциалу. Развитая теория может найти применение в расчётах реалистичных моделей систем потенциальных барьеров в различных полупроводниковых структурах, включая квантовые ямы и сверхрешётки.

Keywords

ПОЛУПРОВОДНИКОВЫЕ ГЕТЕРОСТРУКТУРЫ, ЗАВИСЯЩИЙ ОТ ВРЕМЕНИ ПОТЕНЦИАЛ, ТЕОРИЯ ФЛОКЕ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold