
The article considers transmission of a particle through the system of two δ-function barriers, the first of which having an oscillating component of the amplitude of the δ-function. In the framework of Floquet theory an infinite system of coupled equations for amplitudes of modes of one-dimensional Schr¨odinger equation is obtained. A formula for probability of transmission of the particle through the double potential barrier is derived. An algorithm for numeric computation of probability of transmission is described. Numeric examples for the case of low-frequency oscillating component of the potential are provided as illustrations. The theory developed can be applied to perform computations within realistic models of systems of potential barriers in different semiconductor structures, including quantum wells and superlattices.
Рассмотрено прохождение частицы через систему двух дельтаобразных потенциальных барьеров, первый из которых имеет гармонически осциллирующую добавку к мощности дельта-функции. В рамках теории Флоке получена бесконечная система связанных уравнений на амплитуды мод одномерного уравнения Шрёдингера. Выведена формула для вероятности прохождения частицы через двойной потенциальный барьер. Описан алгоритмчисленного расчёта вероятности прохождения. Изложение проиллюстрировано численными примерами в случае низкочастотной добавки к потенциалу. Развитая теория может найти применение в расчётах реалистичных моделей систем потенциальных барьеров в различных полупроводниковых структурах, включая квантовые ямы и сверхрешётки.
ПОЛУПРОВОДНИКОВЫЕ ГЕТЕРОСТРУКТУРЫ, ЗАВИСЯЩИЙ ОТ ВРЕМЕНИ ПОТЕНЦИАЛ, ТЕОРИЯ ФЛОКЕ
ПОЛУПРОВОДНИКОВЫЕ ГЕТЕРОСТРУКТУРЫ, ЗАВИСЯЩИЙ ОТ ВРЕМЕНИ ПОТЕНЦИАЛ, ТЕОРИЯ ФЛОКЕ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
