Powered by OpenAIRE graph
Found an issue? Give us feedback

Усредняющие фильтры с нелинейными преобразованиями входных данных

Усредняющие фильтры с нелинейными преобразованиями входных данных

Abstract

Algorithms of the digital smoothing filters using nonlinear processing of counting of an entrance signal are offered. Algorithms are received according to a ratio which was offered the author in the previous publications here entrance signal, entrance signal, filter aperture size, continuous, nonlinear function. Five algorithms are given in article when,,. These algorithms of a filtration are investigated in number during removal of additive Gaussian and pulse hindrances. Results of a filtration were compared with a margin error the traditional median filter. Tables of errors of a filtration of the considered filters are provided in article. Also, drawings of the noisy and filtered images are provided. It is shown that with growth of amplitude of pulse noise of an error of new algorithms practically don't change. During removal of pulse noise, if probability of his emergence, that errors of new algorithms are close to errors of the median filter. If, that these errors in 2-3 time there are less errors of the median filter. Gaussian noise is removed offered by filters with the same accuracy, as the median filter. In article the proposal on an opportunity to use the studied algorithms for the solution of practical tasks is made.

Предлагаются алгоритмы цифровых сглаживающих фильтров, использующих нелинейную обработку отсчетов входного сигнала. Алгоритмы получены согласно соотношению, которое было предложено автором в предыдущих публикациях. Здесь входной сигнал, выходной сигнал, размер апертуры фильтра, непрерывная, нелинейная функция. В статье приведены пять алгоритмов, когда,,. Данные алгоритмы фильтрации исследованы численно при удалении аддитивных гауссовских и импульсных помех. Результаты фильтрации сравнивались с погрешностью традиционного медианного фильтра. В статье приведены таблицы погрешностей фильтрации рассматриваемых фильтров. Приведены, также, рисунки зашумленных и отфильтрованных изображений. Показано, что с ростом амплитуды импульсного шума погрешности новых алгоритмов практически не изменяются. При удалении импульсного шума, если вероятность его появления, то погрешности новых алгоритмов близки к погрешностям медианного фильтра. Если, то эти погрешности в 2-3 раза меньше погрешностей медианного фильтра. Гауссовский шум удаляется предлагаемым фильтрами с той же точностью, что и медианным фильтром. В статье сделано предложение о возможности использовать исследованные алгоритмы для решения практических задач.

Keywords

ФИЛЬТР,МЕШАЮЩИЙ ШУМ,ПОГРЕШНОСТЬ ФИЛЬТРАЦИИ,ЦИФРОВОЕ МОДЕЛИРОВАНИЕ,FILTER,DISTURBING NOISE,INACCURACY OF FILTERING,DIGITAL MODELING

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold